On the facile and accurate determination of the highly accurate recent methods to optimize the parameters of different fuel cells: Simulations and analysis

The proton exchange membrane fuel cell (PEMFC) is a potential source of renewable energy that offers a dual benefit of reducing environmental pollution and enabling easy electricity savings. The mathematical model of PEMFC involves several unknown parameters that need to be precisely estimated for d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) Jg. 272; S. 127083
Hauptverfasser: Abdel-Basset, Mohamed, Mohamed, Reda, Abouhawwash, Mohamed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.06.2023
Schlagworte:
ISSN:0360-5442
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The proton exchange membrane fuel cell (PEMFC) is a potential source of renewable energy that offers a dual benefit of reducing environmental pollution and enabling easy electricity savings. The mathematical model of PEMFC involves several unknown parameters that need to be precisely estimated for developing an accurate model. This process of estimating parameters is known as the parameter estimation of PEMFC and is considered an optimization problem. Although the problem of parameter estimation for PEMFC belongs to the category of optimization problems, it cannot be solved by all optimization techniques as it is a complex and nonlinear problem. Therefore, this paper presents a new parameter estimation technique based on adopting a recently published metaheuristic algorithm known as the artificial hummingbird algorithm (AHA). AHA is simple and easy to implement as its main advantages encourage us to adopt it for tackling this problem. However, unfortunately, AHA suffers from slow convergence speed and hence will consume a huge number of function evaluations even reaching the desired outcomes. Therefore, two improvements have been applied to the classical AHA for proposing a new variant , namely IAHA, for overcoming the parameter estimation of PEMFC stacks. IAHA was applied to estimate the unknown parameters of six different PEMFC stacks and compared with 11 well-known competing optimizers in terms of accuracy of outcomes, convergence speed, stability, and CPU time. Based on the experimental results, IAHA outperforms all other algorithms across all performance parameters except for CPU time, which is on par with the other methods. •PEMFC offers renewable energy & electricity savings, but precise parameter estimation is essential for accurate modeling.•Traditional optimization techniques are inadequate for PEMFC parameter estimation due to its complexity & nonlinearity.•A new variant of the artificial hummingbird algorithm (IAHA) is proposed to tackle the parameter estimation problem.•Experimental results show IAHA outperforms other algorithms in accuracy, convergence speed, and stability for PEMFC stacks.
AbstractList The proton exchange membrane fuel cell (PEMFC) is a potential source of renewable energy that offers a dual benefit of reducing environmental pollution and enabling easy electricity savings. The mathematical model of PEMFC involves several unknown parameters that need to be precisely estimated for developing an accurate model. This process of estimating parameters is known as the parameter estimation of PEMFC and is considered an optimization problem. Although the problem of parameter estimation for PEMFC belongs to the category of optimization problems, it cannot be solved by all optimization techniques as it is a complex and nonlinear problem. Therefore, this paper presents a new parameter estimation technique based on adopting a recently published metaheuristic algorithm known as the artificial hummingbird algorithm (AHA). AHA is simple and easy to implement as its main advantages encourage us to adopt it for tackling this problem. However, unfortunately, AHA suffers from slow convergence speed and hence will consume a huge number of function evaluations even reaching the desired outcomes. Therefore, two improvements have been applied to the classical AHA for proposing a new variant , namely IAHA, for overcoming the parameter estimation of PEMFC stacks. IAHA was applied to estimate the unknown parameters of six different PEMFC stacks and compared with 11 well-known competing optimizers in terms of accuracy of outcomes, convergence speed, stability, and CPU time. Based on the experimental results, IAHA outperforms all other algorithms across all performance parameters except for CPU time, which is on par with the other methods. •PEMFC offers renewable energy & electricity savings, but precise parameter estimation is essential for accurate modeling.•Traditional optimization techniques are inadequate for PEMFC parameter estimation due to its complexity & nonlinearity.•A new variant of the artificial hummingbird algorithm (IAHA) is proposed to tackle the parameter estimation problem.•Experimental results show IAHA outperforms other algorithms in accuracy, convergence speed, and stability for PEMFC stacks.
The proton exchange membrane fuel cell (PEMFC) is a potential source of renewable energy that offers a dual benefit of reducing environmental pollution and enabling easy electricity savings. The mathematical model of PEMFC involves several unknown parameters that need to be precisely estimated for developing an accurate model. This process of estimating parameters is known as the parameter estimation of PEMFC and is considered an optimization problem. Although the problem of parameter estimation for PEMFC belongs to the category of optimization problems, it cannot be solved by all optimization techniques as it is a complex and nonlinear problem. Therefore, this paper presents a new parameter estimation technique based on adopting a recently published metaheuristic algorithm known as the artificial hummingbird algorithm (AHA). AHA is simple and easy to implement as its main advantages encourage us to adopt it for tackling this problem. However, unfortunately, AHA suffers from slow convergence speed and hence will consume a huge number of function evaluations even reaching the desired outcomes. Therefore, two improvements have been applied to the classical AHA for proposing a new variant , namely IAHA, for overcoming the parameter estimation of PEMFC stacks. IAHA was applied to estimate the unknown parameters of six different PEMFC stacks and compared with 11 well-known competing optimizers in terms of accuracy of outcomes, convergence speed, stability, and CPU time. Based on the experimental results, IAHA outperforms all other algorithms across all performance parameters except for CPU time, which is on par with the other methods.
ArticleNumber 127083
Author Mohamed, Reda
Abouhawwash, Mohamed
Abdel-Basset, Mohamed
Author_xml – sequence: 1
  givenname: Mohamed
  surname: Abdel-Basset
  fullname: Abdel-Basset, Mohamed
  organization: Department of Computer Science, Faculty of Computers and Informatics, Zagazig University, Zagazig, 44519, Egypt
– sequence: 2
  givenname: Reda
  surname: Mohamed
  fullname: Mohamed, Reda
  organization: Department of Computer Science, Faculty of Computers and Informatics, Zagazig University, Zagazig, 44519, Egypt
– sequence: 3
  givenname: Mohamed
  orcidid: 0000-0003-2846-4707
  surname: Abouhawwash
  fullname: Abouhawwash, Mohamed
  email: abouhaww@msu.edu
  organization: Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
BookMark eNqFkD1PHDEQhl0Qic9_kMJlmrvY3g97KSJFCEgkJAqS2vJ5x9ycvPbF9kY6_gp_lttbJCQKqKZ53ndmnlNyFGIAQr5ytuSMt983SwiQHndLwUS15EIyVR2RE1a1bNHUtTgmpzlvGGON6roT8nwfaFkDdcaiB2pCT421YzIFaA8F0oDBFIyBRncA1_i49rs3KIGFUOgAZR37TEukcVtwwCc44FuTzDD15KmgR-cgTbwbwVML3udL-oDD6A9L8nxAMH6XMZ-TL874DBev84z8vbn-c_VrcXd_-_vq593CVlVXFpx3XLVc2Eb1HV_JTjFwihknG1WvWtNLwbq2bu2qURxqYSUzlVSNsjWsuHXVGfk2925T_DdCLnrAPN1mAsQxa6GqWjDJpdyj9YzaFHNO4PQ24WDSTnOmJ_96o2f_evKvZ__72OW7mMVy-Lgkg_6z8I85DHsH_xGSzhYhWOhxL7_oPuLHBS_GF6qf
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3453594
crossref_primary_10_1109_ACCESS_2025_3584112
crossref_primary_10_1016_j_enconman_2025_119655
crossref_primary_10_1016_j_cma_2024_116781
crossref_primary_10_1038_s41598_025_94730_7
crossref_primary_10_1016_j_energy_2024_131559
crossref_primary_10_1038_s41598_025_93162_7
crossref_primary_10_1016_j_energy_2024_130601
crossref_primary_10_1016_j_fuel_2024_133869
crossref_primary_10_1016_j_cosrev_2025_100727
crossref_primary_10_1016_j_elecom_2025_108033
crossref_primary_10_1016_j_energy_2024_130600
crossref_primary_10_1007_s41939_025_00814_2
crossref_primary_10_1038_s41598_023_46847_w
crossref_primary_10_1016_j_rineng_2025_106400
crossref_primary_10_3390_technologies12090156
crossref_primary_10_1016_j_knosys_2023_111134
crossref_primary_10_1016_j_ijhydene_2024_05_206
crossref_primary_10_1038_s41598_024_83538_6
Cites_doi 10.1016/j.energy.2021.119836
10.1016/j.eswa.2015.04.055
10.1016/j.ijhydene.2021.01.076
10.1016/j.ijhydene.2021.04.130
10.1016/j.energy.2022.125530
10.1016/j.energy.2020.118738
10.28991/esj-2018-01127
10.1016/j.energy.2021.121096
10.1016/j.egyr.2022.08.177
10.1016/S0378-7753(99)00484-X
10.1016/j.energy.2021.122096
10.1016/j.energy.2019.06.152
10.1016/j.ijhydene.2020.12.203
10.1016/j.ijhydene.2021.08.174
10.1016/j.engappai.2019.103300
10.1002/er.7103
10.1016/j.knosys.2015.07.006
10.1016/j.energy.2022.124454
10.1016/j.advengsoft.2017.07.002
10.1016/j.enconman.2019.112197
10.1016/j.cma.2021.114194
10.1016/j.ijhydene.2011.01.070
10.1016/j.ijhydene.2020.12.107
10.28991/esj-2019-01174
10.1007/s00521-021-05821-1
10.1016/j.enconman.2018.12.057
10.1002/er.6750
10.1007/s11356-021-13097-0
10.1016/j.energy.2022.123530
10.1016/j.asej.2022.101749
10.1109/ACCESS.2020.3000770
10.1016/j.enconman.2021.114099
10.1016/j.energy.2021.121532
10.1016/j.energy.2022.123830
10.1007/s00521-019-04452-x
10.1002/er.6282
10.1109/ACCESS.2020.3021754
10.1016/j.isatra.2014.03.018
10.1002/er.7863
10.3390/en14217115
10.1016/j.physa.2019.122802
10.1016/j.jpowsour.2007.05.019
10.1016/j.energy.2019.116616
10.1016/j.energy.2019.02.106
10.1109/TIE.2004.834972
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2023.127083
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2023_127083
S0360544223004772
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-11918612c58d91b7980ef80af7584b6ad7209646cb581e42c70a37858c4eb1cf3
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000955229400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 02:20:43 EDT 2025
Sat Nov 29 07:22:40 EST 2025
Tue Nov 18 20:59:35 EST 2025
Fri Feb 23 02:37:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PEMFC
Artificial hummingbird algorithm
Modeling
Fuel cells
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-11918612c58d91b7980ef80af7584b6ad7209646cb581e42c70a37858c4eb1cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2846-4707
PQID 2834207177
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834207177
crossref_primary_10_1016_j_energy_2023_127083
crossref_citationtrail_10_1016_j_energy_2023_127083
elsevier_sciencedirect_doi_10_1016_j_energy_2023_127083
PublicationCentury 2000
PublicationDate 2023-06-01
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hao, Sobhani (bib15) 2021; 46
Messaoud, Midouni, Hajji (bib28) 2021; 229
Xu, Wang, Wang (bib2) 2019; 173
Abdel-Basset, Mohamed, Abdel-Fatah, Sharawi, Sallam (bib26) 2023
Diab, Tolba, El-Magd, Zaky, El-Rifaie (bib29) 2020; 8
Houssein, Hashim, Ferahtia, Rezk (bib32) 2021; 45
Syah (bib20) 2022; 8
Hachana, El-Fergany (bib38) 2022
Özdemir (bib12) 2021; 46
Gugulothu, Nagu, Pullaguram (bib37) 2022; 44
Sun, Wang, Xu, Yuan, Yousefi (bib25) 2021; 237
Zhao, Zhang, Wang (bib47) 2020; 87
Lai, Li, Zeng, Yousefi (bib33) 2020
El-Fergany, Hasanien, Agwa (bib23) 2019; 201
Singla, Nijhawan, Oberoi (bib13) 2021; 28
Zhao, Wang, Mirjalili (bib49) 2022; 388
Abdel-Basset, Mohamed, Abdel-Fatah, Sharawi, Sallam (bib51) 2023
Diab, Sultan, Do, Kamel, Mossa (bib27) 2020; 8
Meshkat, Vaezi, Babaluo (bib7) 2018; 2
Miao, Chen, Zhao, Demsas (bib34) 2020; 193
Niu, Zhang, Li (bib24) 2014; vol. 86
Alsaidan, Shaheen, Hasanien, Alaraj, Alnafisah (bib39) 2022; 13
Mann, Amphlett, Hooper, Jensen, Peppley, Roberge (bib50) 2000; 86
Rezk, Olabi, Ferahtia, Sayed (bib18) 2022; 255
Jiang, Xu, Meng, Li (bib42) 2020; 537
Kiran, " (bib41) 2015; 42
Gouda, Kotb, El-Fergany (bib19) 2021; 221
Abdel-Basset, Mohamed, Chang (bib40) 2021; 14
Fathy, Abdel Aleem, Rezk (bib35) 2021; 45
Wilberforce, Rezk, Olabi, Epelle, Abdelkareem (bib1) 2023; 262
Abdel-Basset, Mohamed, Elhoseny, Chakrabortty, Ryan (bib48) 2021; 46
Rezk (bib17) 2022; 239
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib44) 2017; 114
Kandidayeni, Macias, Khalatbarisoltani, Boulon, Kelouwani (bib11) 2019; 183
Gandomi (bib46) 2014; 53
Gupta, Nijhawan, Ganguli (bib36) 2021; 45
Kadjo, Brault, Caillard, Coutanceau, Garnier, Martemianov (bib9) 2007; 172
Singh, Nijhawan, Singla, Gupta, Singh (bib10) 2022; 46
Askarzadeh, Rezazadeh (bib5) 2011; 36
Zhao, Wang, Zhang (bib45) 2020; 32
Yang, Liu, Zhang, Dai, Razmjooy (bib3) 2020; 212
Hasanien (bib22) 2022; 247
Yang (bib31) 2021; 46
Zhu, Yousefi (bib14) 2021; 46
Menesy, Sultan, Korashy, Kamel, Jurado (bib8) 2021; 33
Abdel-Basset, Mohamed, El-Fergany, Chakrabortty, Ryan (bib16) 2021; 233
Corrêa, Farret, Canha, Simoes (bib6) 2004; 51
Mirjalili (bib43) 2015; 89
Jiménez-Rodrıguez, Serrano, Benjumea, Borja, El Kaoutit, Fermoso (bib4) 2019; 3
Gouda, Kotb, El-Fergany (bib30) 2021; 237
Rao, Shao, Ahangarnejad, Gholamalizadeh, Sobhani (bib21) 2019; 182
Fathy (10.1016/j.energy.2023.127083_bib35) 2021; 45
Messaoud (10.1016/j.energy.2023.127083_bib28) 2021; 229
Xu (10.1016/j.energy.2023.127083_bib2) 2019; 173
Rezk (10.1016/j.energy.2023.127083_bib17) 2022; 239
Jiménez-Rodrıguez (10.1016/j.energy.2023.127083_bib4) 2019; 3
Miao (10.1016/j.energy.2023.127083_bib34) 2020; 193
Houssein (10.1016/j.energy.2023.127083_bib32) 2021; 45
Gugulothu (10.1016/j.energy.2023.127083_bib37) 2022; 44
Mann (10.1016/j.energy.2023.127083_bib50) 2000; 86
Rao (10.1016/j.energy.2023.127083_bib21) 2019; 182
Abdel-Basset (10.1016/j.energy.2023.127083_bib40) 2021; 14
Gouda (10.1016/j.energy.2023.127083_bib19) 2021; 221
Jiang (10.1016/j.energy.2023.127083_bib42) 2020; 537
Zhao (10.1016/j.energy.2023.127083_bib47) 2020; 87
Diab (10.1016/j.energy.2023.127083_bib27) 2020; 8
Özdemir (10.1016/j.energy.2023.127083_bib12) 2021; 46
Hao (10.1016/j.energy.2023.127083_bib15) 2021; 46
Meshkat (10.1016/j.energy.2023.127083_bib7) 2018; 2
Menesy (10.1016/j.energy.2023.127083_bib8) 2021; 33
El-Fergany (10.1016/j.energy.2023.127083_bib23) 2019; 201
Askarzadeh (10.1016/j.energy.2023.127083_bib5) 2011; 36
Corrêa (10.1016/j.energy.2023.127083_bib6) 2004; 51
Hachana (10.1016/j.energy.2023.127083_bib38) 2022
Yang (10.1016/j.energy.2023.127083_bib3) 2020; 212
Abdel-Basset (10.1016/j.energy.2023.127083_bib48) 2021; 46
Hasanien (10.1016/j.energy.2023.127083_bib22) 2022; 247
Abdel-Basset (10.1016/j.energy.2023.127083_bib51) 2023
Kiran (10.1016/j.energy.2023.127083_bib41) 2015; 42
Alsaidan (10.1016/j.energy.2023.127083_bib39) 2022; 13
Abdel-Basset (10.1016/j.energy.2023.127083_bib16) 2021; 233
Zhao (10.1016/j.energy.2023.127083_bib45) 2020; 32
Kadjo (10.1016/j.energy.2023.127083_bib9) 2007; 172
Diab (10.1016/j.energy.2023.127083_bib29) 2020; 8
Yang (10.1016/j.energy.2023.127083_bib31) 2021; 46
Singla (10.1016/j.energy.2023.127083_bib13) 2021; 28
Wilberforce (10.1016/j.energy.2023.127083_bib1) 2023; 262
Lai (10.1016/j.energy.2023.127083_bib33) 2020
Rezk (10.1016/j.energy.2023.127083_bib18) 2022; 255
Zhao (10.1016/j.energy.2023.127083_bib49) 2022; 388
Syah (10.1016/j.energy.2023.127083_bib20) 2022; 8
Niu (10.1016/j.energy.2023.127083_bib24) 2014; vol. 86
Mirjalili (10.1016/j.energy.2023.127083_bib43) 2015; 89
Kandidayeni (10.1016/j.energy.2023.127083_bib11) 2019; 183
Zhu (10.1016/j.energy.2023.127083_bib14) 2021; 46
Singh (10.1016/j.energy.2023.127083_bib10) 2022; 46
Mirjalili (10.1016/j.energy.2023.127083_bib44) 2017; 114
Gupta (10.1016/j.energy.2023.127083_bib36) 2021; 45
Abdel-Basset (10.1016/j.energy.2023.127083_bib26) 2023
Gouda (10.1016/j.energy.2023.127083_bib30) 2021; 237
Gandomi (10.1016/j.energy.2023.127083_bib46) 2014; 53
Sun (10.1016/j.energy.2023.127083_bib25) 2021; 237
References_xml – volume: 53
  start-page: 1168
  year: 2014
  end-page: 1183
  ident: bib46
  article-title: Interior search algorithm (ISA): a novel approach for global optimization
  publication-title: ISA Trans
– volume: 45
  start-page: 6922
  year: 2021
  end-page: 6942
  ident: bib35
  article-title: A novel approach for PEM fuel cell parameter estimation using LSHADE‐EpSin optimization algorithm
  publication-title: Int J Energy Res
– volume: 173
  start-page: 457
  year: 2019
  end-page: 467
  ident: bib2
  article-title: Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method
  publication-title: Energy
– volume: 28
  start-page: 34511
  year: 2021
  end-page: 34526
  ident: bib13
  article-title: Parameter estimation of proton exchange membrane fuel cell using a novel meta-heuristic algorithm
  publication-title: Environ Sci Pollut Control Ser
– volume: 46
  start-page: 9541
  year: 2021
  end-page: 9552
  ident: bib14
  article-title: Optimal parameter identification of PEMFC stacks using adaptive Sparrow search algorithm
  publication-title: Int J Hydrogen Energy
– volume: 262
  year: 2023
  ident: bib1
  article-title: Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms
  publication-title: Energy
– volume: 221
  year: 2021
  ident: bib19
  article-title: Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: steady-state performance and analysis
  publication-title: Energy
– volume: 229
  year: 2021
  ident: bib28
  article-title: PEM fuel cell model parameters extraction based on moth-flame optimization
  publication-title: Chem Eng Sci
– volume: 233
  year: 2021
  ident: bib16
  article-title: Adaptive and efficient optimization model for optimal parameters of proton exchange membrane fuel cells: a comprehensive analysis
  publication-title: Energy
– volume: 237
  year: 2021
  ident: bib30
  article-title: Investigating dynamic performances of fuel cells using pathfinder algorithm
  publication-title: Energy Convers Manag
– volume: 247
  year: 2022
  ident: bib22
  article-title: Precise modeling of PEM fuel cell using a novel Enhanced Transient Search Optimization algorithm
  publication-title: Energy
– start-page: 1
  year: 2020
  end-page: 10
  ident: bib33
  article-title: Developed owl search algorithm for parameter estimation of PEMFCs
  publication-title: Int J Ambient Energy
– volume: 14
  start-page: 7115
  year: 2021
  ident: bib40
  article-title: An efficient parameter estimation algorithm for proton exchange membrane fuel cells
  publication-title: Energies
– volume: 36
  start-page: 5047
  year: 2011
  end-page: 5053
  ident: bib5
  article-title: A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
– year: 2022
  ident: bib38
  article-title: Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer
  publication-title: Energy
– volume: 87
  year: 2020
  ident: bib47
  article-title: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications
  publication-title: Eng Appl Artif Intell
– volume: 201
  year: 2019
  ident: bib23
  article-title: Semi-empirical PEM fuel cells model using whale optimization algorithm
  publication-title: Energy Convers Manag
– volume: 45
  start-page: 14732
  year: 2021
  end-page: 14744
  ident: bib36
  article-title: Optimal parameter estimation of PEM fuel cell using slime mould algorithm
  publication-title: Int J Energy Res
– volume: 537
  year: 2020
  ident: bib42
  article-title: STSA: a sine Tree-Seed Algorithm for complex continuous optimization problems
  publication-title: Phys Stat Mech Appl
– volume: 172
  start-page: 613
  year: 2007
  end-page: 622
  ident: bib9
  article-title: Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation
  publication-title: J Power Sources
– volume: 86
  start-page: 173
  year: 2000
  end-page: 180
  ident: bib50
  article-title: Development and application of a generalised steady-state electrochemical model for a PEM fuel cell
  publication-title: J Power Sources
– volume: 33
  start-page: 12169
  year: 2021
  end-page: 12190
  ident: bib8
  article-title: A modified farmland fertility optimizer for parameters estimation of fuel cell models
  publication-title: Neural Comput Appl
– volume: 255
  year: 2022
  ident: bib18
  article-title: Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell
  publication-title: Energy
– volume: 32
  start-page: 9383
  year: 2020
  end-page: 9425
  ident: bib45
  article-title: Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm
  publication-title: Neural Comput Appl
– volume: 212
  year: 2020
  ident: bib3
  article-title: Model parameter estimation of the PEMFCs using improved barnacles mating optimization algorithm
  publication-title: Energy
– volume: 45
  start-page: 20199
  year: 2021
  end-page: 20218
  ident: bib32
  article-title: An efficient modified artificial electric field algorithm for solving optimization problems and parameter estimation of fuel cell
  publication-title: Int J Energy Res
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: bib44
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv Eng Software
– volume: 8
  start-page: 111102
  year: 2020
  end-page: 111140
  ident: bib27
  article-title: Coyote optimization algorithm for parameters estimation of various models of solar cells and PV modules
  publication-title: IEEE Access
– year: 2023
  ident: bib51
  article-title: Improved meta-metaheuristic algorithms for optimal parameters selection of proton exchange membrane fuel cells: a comparative study
– volume: 3
  start-page: 109
  year: 2019
  ident: bib4
  article-title: Decreasing microbial fuel cell start-up time using multi-walled carbon nanotubes
  publication-title: Emerg Sci J
– volume: 8
  start-page: 166998
  year: 2020
  end-page: 167018
  ident: bib29
  article-title: Fuel cell parameters estimation via marine predators and political optimizers
  publication-title: IEEE Access
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: bib43
  article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm
  publication-title: Knowl Base Syst
– volume: 239
  year: 2022
  ident: bib17
  article-title: Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer
  publication-title: Energy
– volume: 13
  year: 2022
  ident: bib39
  article-title: A PEMFC model optimization using the enhanced bald eagle algorithm
  publication-title: Ain Shams Eng J
– volume: 46
  start-page: 11908
  year: 2021
  end-page: 11925
  ident: bib48
  article-title: An efficient heap-based optimization algorithm for parameters identification of proton exchange membrane fuel cells model: analysis and case studies
  publication-title: Int J Hydrogen Energy
– volume: 193
  year: 2020
  ident: bib34
  article-title: Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method
  publication-title: Energy
– volume: 46
  start-page: 16465
  year: 2021
  end-page: 16480
  ident: bib12
  article-title: Optimal parameter estimation of polymer electrolyte membrane fuel cells model with chaos embedded particle swarm optimization
  publication-title: Int J Hydrogen Energy
– volume: 388
  year: 2022
  ident: bib49
  article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications
  publication-title: Comput Methods Appl Mech Eng
– volume: 44
  start-page: 1541
  year: 2022
  end-page: 1565
  ident: bib37
  article-title: A computationally efficient jaya optimization for fuel cell maximum power tracking
  publication-title: Energy Sources, Part A Recovery, Util Environ Eff
– volume: 8
  start-page: 10776
  year: 2022
  end-page: 10785
  ident: bib20
  article-title: Developed teamwork optimizer for model parameter estimation of the proton exchange membrane fuel cell
  publication-title: Energy Rep
– volume: 237
  year: 2021
  ident: bib25
  article-title: Optimal estimation of the PEM fuel cells applying deep belief network optimized by improved archimedes optimization algorithm
  publication-title: Energy
– volume: vol. 86
  start-page: 1173
  year: 2014
  end-page: 1185
  ident: bib24
  article-title: management, "A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells
– volume: 182
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib21
  article-title: Shark Smell Optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model
  publication-title: Energy Convers Manag
– volume: 42
  start-page: 6686
  year: 2015
  end-page: 6698
  ident: bib41
  article-title: Tree-seed algorithm for continuous optimization
  publication-title: Expert Syst Appl
– volume: 46
  start-page: 22998
  year: 2021
  end-page: 23012
  ident: bib31
  article-title: Parameter identification of proton exchange membrane fuel cell via Levenberg-Marquardt backpropagation algorithm
  publication-title: Int J Hydrogen Energy
– volume: 51
  start-page: 1103
  year: 2004
  end-page: 1112
  ident: bib6
  article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach
  publication-title: IEEE Trans Ind Electron
– volume: 46
  start-page: 36454
  year: 2021
  end-page: 36465
  ident: bib15
  article-title: Application of the improved chaotic grey wolf optimization algorithm as a novel and efficient method for parameter estimation of solid oxide fuel cells model
  publication-title: Int J Hydrogen Energy
– volume: 183
  start-page: 912
  year: 2019
  end-page: 925
  ident: bib11
  article-title: Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms
  publication-title: Energy
– volume: 2
  start-page: 53
  year: 2018
  end-page: 58
  ident: bib7
  article-title: Study the effect of seeding suspension concentration of DD3R particles on the modified surface of Α-Alumina support for preparing DD3R zeolite membrane with high quality
  publication-title: Emerging Science Journal
– year: 2023
  ident: bib26
  article-title: Improved meta-metaheuristic algorithms for optimal parameters selection of proton exchange membrane fuel cells: a comparative study
– volume: 46
  start-page: 10644
  year: 2022
  end-page: 10655
  ident: bib10
  article-title: Hybrid algorithm for parameter estimation of fuel cell
  publication-title: Int J Energy Res
– volume: 221
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib19
  article-title: Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: steady-state performance and analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119836
– year: 2023
  ident: 10.1016/j.energy.2023.127083_bib51
– volume: 42
  start-page: 6686
  issue: 19
  year: 2015
  ident: 10.1016/j.energy.2023.127083_bib41
  article-title: Tree-seed algorithm for continuous optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.04.055
– volume: 46
  start-page: 11908
  issue: 21
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib48
  article-title: An efficient heap-based optimization algorithm for parameters identification of proton exchange membrane fuel cells model: analysis and case studies
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.01.076
– volume: 46
  start-page: 22998
  issue: 44
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib31
  article-title: Parameter identification of proton exchange membrane fuel cell via Levenberg-Marquardt backpropagation algorithm
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.04.130
– volume: 262
  year: 2023
  ident: 10.1016/j.energy.2023.127083_bib1
  article-title: Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125530
– volume: 229
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib28
  article-title: PEM fuel cell model parameters extraction based on moth-flame optimization
  publication-title: Chem Eng Sci
– volume: 212
  year: 2020
  ident: 10.1016/j.energy.2023.127083_bib3
  article-title: Model parameter estimation of the PEMFCs using improved barnacles mating optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118738
– volume: 2
  start-page: 53
  issue: 1
  year: 2018
  ident: 10.1016/j.energy.2023.127083_bib7
  article-title: Study the effect of seeding suspension concentration of DD3R particles on the modified surface of Α-Alumina support for preparing DD3R zeolite membrane with high quality
  publication-title: Emerging Science Journal
  doi: 10.28991/esj-2018-01127
– volume: 233
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib16
  article-title: Adaptive and efficient optimization model for optimal parameters of proton exchange membrane fuel cells: a comprehensive analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121096
– volume: 8
  start-page: 10776
  year: 2022
  ident: 10.1016/j.energy.2023.127083_bib20
  article-title: Developed teamwork optimizer for model parameter estimation of the proton exchange membrane fuel cell
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.08.177
– volume: 86
  start-page: 173
  issue: 1–2
  year: 2000
  ident: 10.1016/j.energy.2023.127083_bib50
  article-title: Development and application of a generalised steady-state electrochemical model for a PEM fuel cell
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(99)00484-X
– volume: 239
  year: 2022
  ident: 10.1016/j.energy.2023.127083_bib17
  article-title: Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122096
– volume: 183
  start-page: 912
  year: 2019
  ident: 10.1016/j.energy.2023.127083_bib11
  article-title: Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.152
– volume: 46
  start-page: 16465
  issue: 30
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib12
  article-title: Optimal parameter estimation of polymer electrolyte membrane fuel cells model with chaos embedded particle swarm optimization
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.203
– volume: 46
  start-page: 36454
  issue: 73
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib15
  article-title: Application of the improved chaotic grey wolf optimization algorithm as a novel and efficient method for parameter estimation of solid oxide fuel cells model
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.08.174
– volume: 87
  year: 2020
  ident: 10.1016/j.energy.2023.127083_bib47
  article-title: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.103300
– volume: 45
  start-page: 20199
  issue: 14
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib32
  article-title: An efficient modified artificial electric field algorithm for solving optimization problems and parameter estimation of fuel cell
  publication-title: Int J Energy Res
  doi: 10.1002/er.7103
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.energy.2023.127083_bib43
  article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm
  publication-title: Knowl Base Syst
  doi: 10.1016/j.knosys.2015.07.006
– volume: 255
  year: 2022
  ident: 10.1016/j.energy.2023.127083_bib18
  article-title: Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124454
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.energy.2023.127083_bib44
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv Eng Software
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 201
  year: 2019
  ident: 10.1016/j.energy.2023.127083_bib23
  article-title: Semi-empirical PEM fuel cells model using whale optimization algorithm
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.112197
– volume: 388
  year: 2022
  ident: 10.1016/j.energy.2023.127083_bib49
  article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.114194
– volume: 36
  start-page: 5047
  issue: 8
  year: 2011
  ident: 10.1016/j.energy.2023.127083_bib5
  article-title: A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.01.070
– volume: 46
  start-page: 9541
  issue: 14
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib14
  article-title: Optimal parameter identification of PEMFC stacks using adaptive Sparrow search algorithm
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.107
– year: 2023
  ident: 10.1016/j.energy.2023.127083_bib26
– volume: vol. 86
  start-page: 1173
  year: 2014
  ident: 10.1016/j.energy.2023.127083_bib24
– volume: 3
  start-page: 109
  issue: 2
  year: 2019
  ident: 10.1016/j.energy.2023.127083_bib4
  article-title: Decreasing microbial fuel cell start-up time using multi-walled carbon nanotubes
  publication-title: Emerg Sci J
  doi: 10.28991/esj-2019-01174
– volume: 33
  start-page: 12169
  issue: 18
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib8
  article-title: A modified farmland fertility optimizer for parameters estimation of fuel cell models
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-05821-1
– volume: 182
  start-page: 1
  year: 2019
  ident: 10.1016/j.energy.2023.127083_bib21
  article-title: Shark Smell Optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.12.057
– volume: 45
  start-page: 14732
  issue: 10
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib36
  article-title: Optimal parameter estimation of PEM fuel cell using slime mould algorithm
  publication-title: Int J Energy Res
  doi: 10.1002/er.6750
– volume: 28
  start-page: 34511
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib13
  article-title: Parameter estimation of proton exchange membrane fuel cell using a novel meta-heuristic algorithm
  publication-title: Environ Sci Pollut Control Ser
  doi: 10.1007/s11356-021-13097-0
– volume: 247
  year: 2022
  ident: 10.1016/j.energy.2023.127083_bib22
  article-title: Precise modeling of PEM fuel cell using a novel Enhanced Transient Search Optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123530
– volume: 13
  issue: 6
  year: 2022
  ident: 10.1016/j.energy.2023.127083_bib39
  article-title: A PEMFC model optimization using the enhanced bald eagle algorithm
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2022.101749
– volume: 8
  start-page: 111102
  year: 2020
  ident: 10.1016/j.energy.2023.127083_bib27
  article-title: Coyote optimization algorithm for parameters estimation of various models of solar cells and PV modules
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000770
– volume: 237
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib30
  article-title: Investigating dynamic performances of fuel cells using pathfinder algorithm
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114099
– volume: 237
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib25
  article-title: Optimal estimation of the PEM fuel cells applying deep belief network optimized by improved archimedes optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121532
– year: 2022
  ident: 10.1016/j.energy.2023.127083_bib38
  article-title: Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123830
– volume: 32
  start-page: 9383
  issue: 13
  year: 2020
  ident: 10.1016/j.energy.2023.127083_bib45
  article-title: Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04452-x
– volume: 44
  start-page: 1541
  issue: 1
  year: 2022
  ident: 10.1016/j.energy.2023.127083_bib37
  article-title: A computationally efficient jaya optimization for fuel cell maximum power tracking
  publication-title: Energy Sources, Part A Recovery, Util Environ Eff
– volume: 45
  start-page: 6922
  issue: 5
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib35
  article-title: A novel approach for PEM fuel cell parameter estimation using LSHADE‐EpSin optimization algorithm
  publication-title: Int J Energy Res
  doi: 10.1002/er.6282
– volume: 8
  start-page: 166998
  year: 2020
  ident: 10.1016/j.energy.2023.127083_bib29
  article-title: Fuel cell parameters estimation via marine predators and political optimizers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3021754
– volume: 53
  start-page: 1168
  issue: 4
  year: 2014
  ident: 10.1016/j.energy.2023.127083_bib46
  article-title: Interior search algorithm (ISA): a novel approach for global optimization
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2014.03.018
– volume: 46
  start-page: 10644
  issue: 8
  year: 2022
  ident: 10.1016/j.energy.2023.127083_bib10
  article-title: Hybrid algorithm for parameter estimation of fuel cell
  publication-title: Int J Energy Res
  doi: 10.1002/er.7863
– volume: 14
  start-page: 7115
  issue: 21
  year: 2021
  ident: 10.1016/j.energy.2023.127083_bib40
  article-title: An efficient parameter estimation algorithm for proton exchange membrane fuel cells
  publication-title: Energies
  doi: 10.3390/en14217115
– volume: 537
  year: 2020
  ident: 10.1016/j.energy.2023.127083_bib42
  article-title: STSA: a sine Tree-Seed Algorithm for complex continuous optimization problems
  publication-title: Phys Stat Mech Appl
  doi: 10.1016/j.physa.2019.122802
– volume: 172
  start-page: 613
  issue: 2
  year: 2007
  ident: 10.1016/j.energy.2023.127083_bib9
  article-title: Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.05.019
– volume: 193
  year: 2020
  ident: 10.1016/j.energy.2023.127083_bib34
  article-title: Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116616
– volume: 173
  start-page: 457
  year: 2019
  ident: 10.1016/j.energy.2023.127083_bib2
  article-title: Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.106
– start-page: 1
  year: 2020
  ident: 10.1016/j.energy.2023.127083_bib33
  article-title: Developed owl search algorithm for parameter estimation of PEMFCs
  publication-title: Int J Ambient Energy
– volume: 51
  start-page: 1103
  issue: 5
  year: 2004
  ident: 10.1016/j.energy.2023.127083_bib6
  article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2004.834972
SSID ssj0005899
Score 2.5226157
Snippet The proton exchange membrane fuel cell (PEMFC) is a potential source of renewable energy that offers a dual benefit of reducing environmental pollution and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127083
SubjectTerms algorithms
Artificial hummingbird algorithm
electricity
energy
Fuel cells
fuels
hummingbirds
mathematical models
Modeling
PEMFC
pollution
renewable energy sources
system optimization
Title On the facile and accurate determination of the highly accurate recent methods to optimize the parameters of different fuel cells: Simulations and analysis
URI https://dx.doi.org/10.1016/j.energy.2023.127083
https://www.proquest.com/docview/2834207177
Volume 272
WOSCitedRecordID wos000955229400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKhgQvCAbTxpeMhHipXLX5qG3eBuoEqLRIdFLfLMdx1E5ZUtZ2K_wdvPHPco7thA7QxgMvURKdnbT3i3323f0OoZea8YQmSY9knClYoKSMsEhqQrNM92WcpImlzB_S0YhNp_xTq_Xd58Jc5LQo2GbDF_9V1XAPlG1SZ_9B3XWncAPOQelwBLXD8UaKH9vAxUwq-OAtF6tSa8MI0U597Is3E42gISzOvzZCMASa-ABbWrrifyhhWDmbf9M2rUqacC7DyWk68PVVVu1srfO2cQNUMXaf52drH2Vn6WAt98mWI8CmHRq-040NsW82JZJU5-QNGPbWV_KxnMFD0xod9tLCo9lSMC6smby8lMvZ1UZuXyMIm_irOp-rS-Io2hqrAxq0Fx3jLWch-eMMYDcjTju6-g0d07OTb2Y87-UfjcXxyXAoJoPp5NXiCzG1yIzP3hVmuYV2AxpzGCt3j94Pph-a0CFW1SWt39CnZFZxg78_-G8mz5XJv7JoJvfRPbcUwUcWQg9QSxd76I7PVF_uof1BkwUJgm4aWD5EP8YFBixgizEMCsYePngLY7jMKkGLsUbIYgw7jOFViT3GKvEGY6aDGmPYYAxXGHuNf0GYfQGHsEfo5HgwefuOuCofRIUhXxHDMMjAzlYxS3kvoZx1dca6MoOVbJT0ZUoDWGZHfZXErKejQNGuDCmLmYrAzlBZuI92irLQBwiHIUzfCddcQ1MZKsa7KoiY1LoXyrifHaLQK0IoR4FvKrHkwsc6ngqrPmHUJ6z6DhGpWy0sBcw18tTrWDgz1pqnAjB6TcsXHhICRnnzf8pCl-ulgEVAFJitF_r4BjJP0N3mi3qKdlbna_0M3VYXq_ny_LlD80_08NDt
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+facile+and+accurate+determination+of+the+highly+accurate+recent+methods+to+optimize+the+parameters+of+different+fuel+cells%3A+Simulations+and+analysis&rft.jtitle=Energy+%28Oxford%29&rft.au=Abdel-Basset%2C+Mohamed&rft.au=Mohamed%2C+Reda&rft.au=Abouhawwash%2C+Mohamed&rft.date=2023-06-01&rft.issn=0360-5442&rft.volume=272+p.127083-&rft_id=info:doi/10.1016%2Fj.energy.2023.127083&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon