On the facile and accurate determination of the highly accurate recent methods to optimize the parameters of different fuel cells: Simulations and analysis
The proton exchange membrane fuel cell (PEMFC) is a potential source of renewable energy that offers a dual benefit of reducing environmental pollution and enabling easy electricity savings. The mathematical model of PEMFC involves several unknown parameters that need to be precisely estimated for d...
Gespeichert in:
| Veröffentlicht in: | Energy (Oxford) Jg. 272; S. 127083 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.06.2023
|
| Schlagworte: | |
| ISSN: | 0360-5442 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The proton exchange membrane fuel cell (PEMFC) is a potential source of renewable energy that offers a dual benefit of reducing environmental pollution and enabling easy electricity savings. The mathematical model of PEMFC involves several unknown parameters that need to be precisely estimated for developing an accurate model. This process of estimating parameters is known as the parameter estimation of PEMFC and is considered an optimization problem. Although the problem of parameter estimation for PEMFC belongs to the category of optimization problems, it cannot be solved by all optimization techniques as it is a complex and nonlinear problem. Therefore, this paper presents a new parameter estimation technique based on adopting a recently published metaheuristic algorithm known as the artificial hummingbird algorithm (AHA). AHA is simple and easy to implement as its main advantages encourage us to adopt it for tackling this problem. However, unfortunately, AHA suffers from slow convergence speed and hence will consume a huge number of function evaluations even reaching the desired outcomes. Therefore, two improvements have been applied to the classical AHA for proposing a new variant , namely IAHA, for overcoming the parameter estimation of PEMFC stacks. IAHA was applied to estimate the unknown parameters of six different PEMFC stacks and compared with 11 well-known competing optimizers in terms of accuracy of outcomes, convergence speed, stability, and CPU time. Based on the experimental results, IAHA outperforms all other algorithms across all performance parameters except for CPU time, which is on par with the other methods.
•PEMFC offers renewable energy & electricity savings, but precise parameter estimation is essential for accurate modeling.•Traditional optimization techniques are inadequate for PEMFC parameter estimation due to its complexity & nonlinearity.•A new variant of the artificial hummingbird algorithm (IAHA) is proposed to tackle the parameter estimation problem.•Experimental results show IAHA outperforms other algorithms in accuracy, convergence speed, and stability for PEMFC stacks. |
|---|---|
| AbstractList | The proton exchange membrane fuel cell (PEMFC) is a potential source of renewable energy that offers a dual benefit of reducing environmental pollution and enabling easy electricity savings. The mathematical model of PEMFC involves several unknown parameters that need to be precisely estimated for developing an accurate model. This process of estimating parameters is known as the parameter estimation of PEMFC and is considered an optimization problem. Although the problem of parameter estimation for PEMFC belongs to the category of optimization problems, it cannot be solved by all optimization techniques as it is a complex and nonlinear problem. Therefore, this paper presents a new parameter estimation technique based on adopting a recently published metaheuristic algorithm known as the artificial hummingbird algorithm (AHA). AHA is simple and easy to implement as its main advantages encourage us to adopt it for tackling this problem. However, unfortunately, AHA suffers from slow convergence speed and hence will consume a huge number of function evaluations even reaching the desired outcomes. Therefore, two improvements have been applied to the classical AHA for proposing a new variant , namely IAHA, for overcoming the parameter estimation of PEMFC stacks. IAHA was applied to estimate the unknown parameters of six different PEMFC stacks and compared with 11 well-known competing optimizers in terms of accuracy of outcomes, convergence speed, stability, and CPU time. Based on the experimental results, IAHA outperforms all other algorithms across all performance parameters except for CPU time, which is on par with the other methods.
•PEMFC offers renewable energy & electricity savings, but precise parameter estimation is essential for accurate modeling.•Traditional optimization techniques are inadequate for PEMFC parameter estimation due to its complexity & nonlinearity.•A new variant of the artificial hummingbird algorithm (IAHA) is proposed to tackle the parameter estimation problem.•Experimental results show IAHA outperforms other algorithms in accuracy, convergence speed, and stability for PEMFC stacks. The proton exchange membrane fuel cell (PEMFC) is a potential source of renewable energy that offers a dual benefit of reducing environmental pollution and enabling easy electricity savings. The mathematical model of PEMFC involves several unknown parameters that need to be precisely estimated for developing an accurate model. This process of estimating parameters is known as the parameter estimation of PEMFC and is considered an optimization problem. Although the problem of parameter estimation for PEMFC belongs to the category of optimization problems, it cannot be solved by all optimization techniques as it is a complex and nonlinear problem. Therefore, this paper presents a new parameter estimation technique based on adopting a recently published metaheuristic algorithm known as the artificial hummingbird algorithm (AHA). AHA is simple and easy to implement as its main advantages encourage us to adopt it for tackling this problem. However, unfortunately, AHA suffers from slow convergence speed and hence will consume a huge number of function evaluations even reaching the desired outcomes. Therefore, two improvements have been applied to the classical AHA for proposing a new variant , namely IAHA, for overcoming the parameter estimation of PEMFC stacks. IAHA was applied to estimate the unknown parameters of six different PEMFC stacks and compared with 11 well-known competing optimizers in terms of accuracy of outcomes, convergence speed, stability, and CPU time. Based on the experimental results, IAHA outperforms all other algorithms across all performance parameters except for CPU time, which is on par with the other methods. |
| ArticleNumber | 127083 |
| Author | Mohamed, Reda Abouhawwash, Mohamed Abdel-Basset, Mohamed |
| Author_xml | – sequence: 1 givenname: Mohamed surname: Abdel-Basset fullname: Abdel-Basset, Mohamed organization: Department of Computer Science, Faculty of Computers and Informatics, Zagazig University, Zagazig, 44519, Egypt – sequence: 2 givenname: Reda surname: Mohamed fullname: Mohamed, Reda organization: Department of Computer Science, Faculty of Computers and Informatics, Zagazig University, Zagazig, 44519, Egypt – sequence: 3 givenname: Mohamed orcidid: 0000-0003-2846-4707 surname: Abouhawwash fullname: Abouhawwash, Mohamed email: abouhaww@msu.edu organization: Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt |
| BookMark | eNqFkD1PHDEQhl0Qic9_kMJlmrvY3g97KSJFCEgkJAqS2vJ5x9ycvPbF9kY6_gp_lttbJCQKqKZ53ndmnlNyFGIAQr5ytuSMt983SwiQHndLwUS15EIyVR2RE1a1bNHUtTgmpzlvGGON6roT8nwfaFkDdcaiB2pCT421YzIFaA8F0oDBFIyBRncA1_i49rs3KIGFUOgAZR37TEukcVtwwCc44FuTzDD15KmgR-cgTbwbwVML3udL-oDD6A9L8nxAMH6XMZ-TL874DBev84z8vbn-c_VrcXd_-_vq593CVlVXFpx3XLVc2Eb1HV_JTjFwihknG1WvWtNLwbq2bu2qURxqYSUzlVSNsjWsuHXVGfk2925T_DdCLnrAPN1mAsQxa6GqWjDJpdyj9YzaFHNO4PQ24WDSTnOmJ_96o2f_evKvZ__72OW7mMVy-Lgkg_6z8I85DHsH_xGSzhYhWOhxL7_oPuLHBS_GF6qf |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3453594 crossref_primary_10_1109_ACCESS_2025_3584112 crossref_primary_10_1016_j_enconman_2025_119655 crossref_primary_10_1016_j_cma_2024_116781 crossref_primary_10_1038_s41598_025_94730_7 crossref_primary_10_1016_j_energy_2024_131559 crossref_primary_10_1038_s41598_025_93162_7 crossref_primary_10_1016_j_energy_2024_130601 crossref_primary_10_1016_j_fuel_2024_133869 crossref_primary_10_1016_j_cosrev_2025_100727 crossref_primary_10_1016_j_elecom_2025_108033 crossref_primary_10_1016_j_energy_2024_130600 crossref_primary_10_1007_s41939_025_00814_2 crossref_primary_10_1038_s41598_023_46847_w crossref_primary_10_1016_j_rineng_2025_106400 crossref_primary_10_3390_technologies12090156 crossref_primary_10_1016_j_knosys_2023_111134 crossref_primary_10_1016_j_ijhydene_2024_05_206 crossref_primary_10_1038_s41598_024_83538_6 |
| Cites_doi | 10.1016/j.energy.2021.119836 10.1016/j.eswa.2015.04.055 10.1016/j.ijhydene.2021.01.076 10.1016/j.ijhydene.2021.04.130 10.1016/j.energy.2022.125530 10.1016/j.energy.2020.118738 10.28991/esj-2018-01127 10.1016/j.energy.2021.121096 10.1016/j.egyr.2022.08.177 10.1016/S0378-7753(99)00484-X 10.1016/j.energy.2021.122096 10.1016/j.energy.2019.06.152 10.1016/j.ijhydene.2020.12.203 10.1016/j.ijhydene.2021.08.174 10.1016/j.engappai.2019.103300 10.1002/er.7103 10.1016/j.knosys.2015.07.006 10.1016/j.energy.2022.124454 10.1016/j.advengsoft.2017.07.002 10.1016/j.enconman.2019.112197 10.1016/j.cma.2021.114194 10.1016/j.ijhydene.2011.01.070 10.1016/j.ijhydene.2020.12.107 10.28991/esj-2019-01174 10.1007/s00521-021-05821-1 10.1016/j.enconman.2018.12.057 10.1002/er.6750 10.1007/s11356-021-13097-0 10.1016/j.energy.2022.123530 10.1016/j.asej.2022.101749 10.1109/ACCESS.2020.3000770 10.1016/j.enconman.2021.114099 10.1016/j.energy.2021.121532 10.1016/j.energy.2022.123830 10.1007/s00521-019-04452-x 10.1002/er.6282 10.1109/ACCESS.2020.3021754 10.1016/j.isatra.2014.03.018 10.1002/er.7863 10.3390/en14217115 10.1016/j.physa.2019.122802 10.1016/j.jpowsour.2007.05.019 10.1016/j.energy.2019.116616 10.1016/j.energy.2019.02.106 10.1109/TIE.2004.834972 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2023.127083 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2023_127083 S0360544223004772 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-11918612c58d91b7980ef80af7584b6ad7209646cb581e42c70a37858c4eb1cf3 |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000955229400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 02:20:43 EDT 2025 Sat Nov 29 07:22:40 EST 2025 Tue Nov 18 20:59:35 EST 2025 Fri Feb 23 02:37:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | PEMFC Artificial hummingbird algorithm Modeling Fuel cells |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-11918612c58d91b7980ef80af7584b6ad7209646cb581e42c70a37858c4eb1cf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2846-4707 |
| PQID | 2834207177 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2834207177 crossref_primary_10_1016_j_energy_2023_127083 crossref_citationtrail_10_1016_j_energy_2023_127083 elsevier_sciencedirect_doi_10_1016_j_energy_2023_127083 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 2023-06-00 20230601 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hao, Sobhani (bib15) 2021; 46 Messaoud, Midouni, Hajji (bib28) 2021; 229 Xu, Wang, Wang (bib2) 2019; 173 Abdel-Basset, Mohamed, Abdel-Fatah, Sharawi, Sallam (bib26) 2023 Diab, Tolba, El-Magd, Zaky, El-Rifaie (bib29) 2020; 8 Houssein, Hashim, Ferahtia, Rezk (bib32) 2021; 45 Syah (bib20) 2022; 8 Hachana, El-Fergany (bib38) 2022 Özdemir (bib12) 2021; 46 Gugulothu, Nagu, Pullaguram (bib37) 2022; 44 Sun, Wang, Xu, Yuan, Yousefi (bib25) 2021; 237 Zhao, Zhang, Wang (bib47) 2020; 87 Lai, Li, Zeng, Yousefi (bib33) 2020 El-Fergany, Hasanien, Agwa (bib23) 2019; 201 Singla, Nijhawan, Oberoi (bib13) 2021; 28 Zhao, Wang, Mirjalili (bib49) 2022; 388 Abdel-Basset, Mohamed, Abdel-Fatah, Sharawi, Sallam (bib51) 2023 Diab, Sultan, Do, Kamel, Mossa (bib27) 2020; 8 Meshkat, Vaezi, Babaluo (bib7) 2018; 2 Miao, Chen, Zhao, Demsas (bib34) 2020; 193 Niu, Zhang, Li (bib24) 2014; vol. 86 Alsaidan, Shaheen, Hasanien, Alaraj, Alnafisah (bib39) 2022; 13 Mann, Amphlett, Hooper, Jensen, Peppley, Roberge (bib50) 2000; 86 Rezk, Olabi, Ferahtia, Sayed (bib18) 2022; 255 Jiang, Xu, Meng, Li (bib42) 2020; 537 Kiran, " (bib41) 2015; 42 Gouda, Kotb, El-Fergany (bib19) 2021; 221 Abdel-Basset, Mohamed, Chang (bib40) 2021; 14 Fathy, Abdel Aleem, Rezk (bib35) 2021; 45 Wilberforce, Rezk, Olabi, Epelle, Abdelkareem (bib1) 2023; 262 Abdel-Basset, Mohamed, Elhoseny, Chakrabortty, Ryan (bib48) 2021; 46 Rezk (bib17) 2022; 239 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib44) 2017; 114 Kandidayeni, Macias, Khalatbarisoltani, Boulon, Kelouwani (bib11) 2019; 183 Gandomi (bib46) 2014; 53 Gupta, Nijhawan, Ganguli (bib36) 2021; 45 Kadjo, Brault, Caillard, Coutanceau, Garnier, Martemianov (bib9) 2007; 172 Singh, Nijhawan, Singla, Gupta, Singh (bib10) 2022; 46 Askarzadeh, Rezazadeh (bib5) 2011; 36 Zhao, Wang, Zhang (bib45) 2020; 32 Yang, Liu, Zhang, Dai, Razmjooy (bib3) 2020; 212 Hasanien (bib22) 2022; 247 Yang (bib31) 2021; 46 Zhu, Yousefi (bib14) 2021; 46 Menesy, Sultan, Korashy, Kamel, Jurado (bib8) 2021; 33 Abdel-Basset, Mohamed, El-Fergany, Chakrabortty, Ryan (bib16) 2021; 233 Corrêa, Farret, Canha, Simoes (bib6) 2004; 51 Mirjalili (bib43) 2015; 89 Jiménez-Rodrıguez, Serrano, Benjumea, Borja, El Kaoutit, Fermoso (bib4) 2019; 3 Gouda, Kotb, El-Fergany (bib30) 2021; 237 Rao, Shao, Ahangarnejad, Gholamalizadeh, Sobhani (bib21) 2019; 182 Fathy (10.1016/j.energy.2023.127083_bib35) 2021; 45 Messaoud (10.1016/j.energy.2023.127083_bib28) 2021; 229 Xu (10.1016/j.energy.2023.127083_bib2) 2019; 173 Rezk (10.1016/j.energy.2023.127083_bib17) 2022; 239 Jiménez-Rodrıguez (10.1016/j.energy.2023.127083_bib4) 2019; 3 Miao (10.1016/j.energy.2023.127083_bib34) 2020; 193 Houssein (10.1016/j.energy.2023.127083_bib32) 2021; 45 Gugulothu (10.1016/j.energy.2023.127083_bib37) 2022; 44 Mann (10.1016/j.energy.2023.127083_bib50) 2000; 86 Rao (10.1016/j.energy.2023.127083_bib21) 2019; 182 Abdel-Basset (10.1016/j.energy.2023.127083_bib40) 2021; 14 Gouda (10.1016/j.energy.2023.127083_bib19) 2021; 221 Jiang (10.1016/j.energy.2023.127083_bib42) 2020; 537 Zhao (10.1016/j.energy.2023.127083_bib47) 2020; 87 Diab (10.1016/j.energy.2023.127083_bib27) 2020; 8 Özdemir (10.1016/j.energy.2023.127083_bib12) 2021; 46 Hao (10.1016/j.energy.2023.127083_bib15) 2021; 46 Meshkat (10.1016/j.energy.2023.127083_bib7) 2018; 2 Menesy (10.1016/j.energy.2023.127083_bib8) 2021; 33 El-Fergany (10.1016/j.energy.2023.127083_bib23) 2019; 201 Askarzadeh (10.1016/j.energy.2023.127083_bib5) 2011; 36 Corrêa (10.1016/j.energy.2023.127083_bib6) 2004; 51 Hachana (10.1016/j.energy.2023.127083_bib38) 2022 Yang (10.1016/j.energy.2023.127083_bib3) 2020; 212 Abdel-Basset (10.1016/j.energy.2023.127083_bib48) 2021; 46 Hasanien (10.1016/j.energy.2023.127083_bib22) 2022; 247 Abdel-Basset (10.1016/j.energy.2023.127083_bib51) 2023 Kiran (10.1016/j.energy.2023.127083_bib41) 2015; 42 Alsaidan (10.1016/j.energy.2023.127083_bib39) 2022; 13 Abdel-Basset (10.1016/j.energy.2023.127083_bib16) 2021; 233 Zhao (10.1016/j.energy.2023.127083_bib45) 2020; 32 Kadjo (10.1016/j.energy.2023.127083_bib9) 2007; 172 Diab (10.1016/j.energy.2023.127083_bib29) 2020; 8 Yang (10.1016/j.energy.2023.127083_bib31) 2021; 46 Singla (10.1016/j.energy.2023.127083_bib13) 2021; 28 Wilberforce (10.1016/j.energy.2023.127083_bib1) 2023; 262 Lai (10.1016/j.energy.2023.127083_bib33) 2020 Rezk (10.1016/j.energy.2023.127083_bib18) 2022; 255 Zhao (10.1016/j.energy.2023.127083_bib49) 2022; 388 Syah (10.1016/j.energy.2023.127083_bib20) 2022; 8 Niu (10.1016/j.energy.2023.127083_bib24) 2014; vol. 86 Mirjalili (10.1016/j.energy.2023.127083_bib43) 2015; 89 Kandidayeni (10.1016/j.energy.2023.127083_bib11) 2019; 183 Zhu (10.1016/j.energy.2023.127083_bib14) 2021; 46 Singh (10.1016/j.energy.2023.127083_bib10) 2022; 46 Mirjalili (10.1016/j.energy.2023.127083_bib44) 2017; 114 Gupta (10.1016/j.energy.2023.127083_bib36) 2021; 45 Abdel-Basset (10.1016/j.energy.2023.127083_bib26) 2023 Gouda (10.1016/j.energy.2023.127083_bib30) 2021; 237 Gandomi (10.1016/j.energy.2023.127083_bib46) 2014; 53 Sun (10.1016/j.energy.2023.127083_bib25) 2021; 237 |
| References_xml | – volume: 53 start-page: 1168 year: 2014 end-page: 1183 ident: bib46 article-title: Interior search algorithm (ISA): a novel approach for global optimization publication-title: ISA Trans – volume: 45 start-page: 6922 year: 2021 end-page: 6942 ident: bib35 article-title: A novel approach for PEM fuel cell parameter estimation using LSHADE‐EpSin optimization algorithm publication-title: Int J Energy Res – volume: 173 start-page: 457 year: 2019 end-page: 467 ident: bib2 article-title: Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method publication-title: Energy – volume: 28 start-page: 34511 year: 2021 end-page: 34526 ident: bib13 article-title: Parameter estimation of proton exchange membrane fuel cell using a novel meta-heuristic algorithm publication-title: Environ Sci Pollut Control Ser – volume: 46 start-page: 9541 year: 2021 end-page: 9552 ident: bib14 article-title: Optimal parameter identification of PEMFC stacks using adaptive Sparrow search algorithm publication-title: Int J Hydrogen Energy – volume: 262 year: 2023 ident: bib1 article-title: Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms publication-title: Energy – volume: 221 year: 2021 ident: bib19 article-title: Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: steady-state performance and analysis publication-title: Energy – volume: 229 year: 2021 ident: bib28 article-title: PEM fuel cell model parameters extraction based on moth-flame optimization publication-title: Chem Eng Sci – volume: 233 year: 2021 ident: bib16 article-title: Adaptive and efficient optimization model for optimal parameters of proton exchange membrane fuel cells: a comprehensive analysis publication-title: Energy – volume: 237 year: 2021 ident: bib30 article-title: Investigating dynamic performances of fuel cells using pathfinder algorithm publication-title: Energy Convers Manag – volume: 247 year: 2022 ident: bib22 article-title: Precise modeling of PEM fuel cell using a novel Enhanced Transient Search Optimization algorithm publication-title: Energy – start-page: 1 year: 2020 end-page: 10 ident: bib33 article-title: Developed owl search algorithm for parameter estimation of PEMFCs publication-title: Int J Ambient Energy – volume: 14 start-page: 7115 year: 2021 ident: bib40 article-title: An efficient parameter estimation algorithm for proton exchange membrane fuel cells publication-title: Energies – volume: 36 start-page: 5047 year: 2011 end-page: 5053 ident: bib5 article-title: A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell publication-title: Int J Hydrogen Energy – year: 2022 ident: bib38 article-title: Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer publication-title: Energy – volume: 87 year: 2020 ident: bib47 article-title: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications publication-title: Eng Appl Artif Intell – volume: 201 year: 2019 ident: bib23 article-title: Semi-empirical PEM fuel cells model using whale optimization algorithm publication-title: Energy Convers Manag – volume: 45 start-page: 14732 year: 2021 end-page: 14744 ident: bib36 article-title: Optimal parameter estimation of PEM fuel cell using slime mould algorithm publication-title: Int J Energy Res – volume: 537 year: 2020 ident: bib42 article-title: STSA: a sine Tree-Seed Algorithm for complex continuous optimization problems publication-title: Phys Stat Mech Appl – volume: 172 start-page: 613 year: 2007 end-page: 622 ident: bib9 article-title: Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation publication-title: J Power Sources – volume: 86 start-page: 173 year: 2000 end-page: 180 ident: bib50 article-title: Development and application of a generalised steady-state electrochemical model for a PEM fuel cell publication-title: J Power Sources – volume: 33 start-page: 12169 year: 2021 end-page: 12190 ident: bib8 article-title: A modified farmland fertility optimizer for parameters estimation of fuel cell models publication-title: Neural Comput Appl – volume: 255 year: 2022 ident: bib18 article-title: Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell publication-title: Energy – volume: 32 start-page: 9383 year: 2020 end-page: 9425 ident: bib45 article-title: Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm publication-title: Neural Comput Appl – volume: 212 year: 2020 ident: bib3 article-title: Model parameter estimation of the PEMFCs using improved barnacles mating optimization algorithm publication-title: Energy – volume: 45 start-page: 20199 year: 2021 end-page: 20218 ident: bib32 article-title: An efficient modified artificial electric field algorithm for solving optimization problems and parameter estimation of fuel cell publication-title: Int J Energy Res – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: bib44 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv Eng Software – volume: 8 start-page: 111102 year: 2020 end-page: 111140 ident: bib27 article-title: Coyote optimization algorithm for parameters estimation of various models of solar cells and PV modules publication-title: IEEE Access – year: 2023 ident: bib51 article-title: Improved meta-metaheuristic algorithms for optimal parameters selection of proton exchange membrane fuel cells: a comparative study – volume: 3 start-page: 109 year: 2019 ident: bib4 article-title: Decreasing microbial fuel cell start-up time using multi-walled carbon nanotubes publication-title: Emerg Sci J – volume: 8 start-page: 166998 year: 2020 end-page: 167018 ident: bib29 article-title: Fuel cell parameters estimation via marine predators and political optimizers publication-title: IEEE Access – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: bib43 article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm publication-title: Knowl Base Syst – volume: 239 year: 2022 ident: bib17 article-title: Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer publication-title: Energy – volume: 13 year: 2022 ident: bib39 article-title: A PEMFC model optimization using the enhanced bald eagle algorithm publication-title: Ain Shams Eng J – volume: 46 start-page: 11908 year: 2021 end-page: 11925 ident: bib48 article-title: An efficient heap-based optimization algorithm for parameters identification of proton exchange membrane fuel cells model: analysis and case studies publication-title: Int J Hydrogen Energy – volume: 193 year: 2020 ident: bib34 article-title: Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method publication-title: Energy – volume: 46 start-page: 16465 year: 2021 end-page: 16480 ident: bib12 article-title: Optimal parameter estimation of polymer electrolyte membrane fuel cells model with chaos embedded particle swarm optimization publication-title: Int J Hydrogen Energy – volume: 388 year: 2022 ident: bib49 article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications publication-title: Comput Methods Appl Mech Eng – volume: 44 start-page: 1541 year: 2022 end-page: 1565 ident: bib37 article-title: A computationally efficient jaya optimization for fuel cell maximum power tracking publication-title: Energy Sources, Part A Recovery, Util Environ Eff – volume: 8 start-page: 10776 year: 2022 end-page: 10785 ident: bib20 article-title: Developed teamwork optimizer for model parameter estimation of the proton exchange membrane fuel cell publication-title: Energy Rep – volume: 237 year: 2021 ident: bib25 article-title: Optimal estimation of the PEM fuel cells applying deep belief network optimized by improved archimedes optimization algorithm publication-title: Energy – volume: vol. 86 start-page: 1173 year: 2014 end-page: 1185 ident: bib24 article-title: management, "A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells – volume: 182 start-page: 1 year: 2019 end-page: 8 ident: bib21 article-title: Shark Smell Optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model publication-title: Energy Convers Manag – volume: 42 start-page: 6686 year: 2015 end-page: 6698 ident: bib41 article-title: Tree-seed algorithm for continuous optimization publication-title: Expert Syst Appl – volume: 46 start-page: 22998 year: 2021 end-page: 23012 ident: bib31 article-title: Parameter identification of proton exchange membrane fuel cell via Levenberg-Marquardt backpropagation algorithm publication-title: Int J Hydrogen Energy – volume: 51 start-page: 1103 year: 2004 end-page: 1112 ident: bib6 article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach publication-title: IEEE Trans Ind Electron – volume: 46 start-page: 36454 year: 2021 end-page: 36465 ident: bib15 article-title: Application of the improved chaotic grey wolf optimization algorithm as a novel and efficient method for parameter estimation of solid oxide fuel cells model publication-title: Int J Hydrogen Energy – volume: 183 start-page: 912 year: 2019 end-page: 925 ident: bib11 article-title: Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms publication-title: Energy – volume: 2 start-page: 53 year: 2018 end-page: 58 ident: bib7 article-title: Study the effect of seeding suspension concentration of DD3R particles on the modified surface of Α-Alumina support for preparing DD3R zeolite membrane with high quality publication-title: Emerging Science Journal – year: 2023 ident: bib26 article-title: Improved meta-metaheuristic algorithms for optimal parameters selection of proton exchange membrane fuel cells: a comparative study – volume: 46 start-page: 10644 year: 2022 end-page: 10655 ident: bib10 article-title: Hybrid algorithm for parameter estimation of fuel cell publication-title: Int J Energy Res – volume: 221 year: 2021 ident: 10.1016/j.energy.2023.127083_bib19 article-title: Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: steady-state performance and analysis publication-title: Energy doi: 10.1016/j.energy.2021.119836 – year: 2023 ident: 10.1016/j.energy.2023.127083_bib51 – volume: 42 start-page: 6686 issue: 19 year: 2015 ident: 10.1016/j.energy.2023.127083_bib41 article-title: Tree-seed algorithm for continuous optimization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.04.055 – volume: 46 start-page: 11908 issue: 21 year: 2021 ident: 10.1016/j.energy.2023.127083_bib48 article-title: An efficient heap-based optimization algorithm for parameters identification of proton exchange membrane fuel cells model: analysis and case studies publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.01.076 – volume: 46 start-page: 22998 issue: 44 year: 2021 ident: 10.1016/j.energy.2023.127083_bib31 article-title: Parameter identification of proton exchange membrane fuel cell via Levenberg-Marquardt backpropagation algorithm publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.04.130 – volume: 262 year: 2023 ident: 10.1016/j.energy.2023.127083_bib1 article-title: Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms publication-title: Energy doi: 10.1016/j.energy.2022.125530 – volume: 229 year: 2021 ident: 10.1016/j.energy.2023.127083_bib28 article-title: PEM fuel cell model parameters extraction based on moth-flame optimization publication-title: Chem Eng Sci – volume: 212 year: 2020 ident: 10.1016/j.energy.2023.127083_bib3 article-title: Model parameter estimation of the PEMFCs using improved barnacles mating optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2020.118738 – volume: 2 start-page: 53 issue: 1 year: 2018 ident: 10.1016/j.energy.2023.127083_bib7 article-title: Study the effect of seeding suspension concentration of DD3R particles on the modified surface of Α-Alumina support for preparing DD3R zeolite membrane with high quality publication-title: Emerging Science Journal doi: 10.28991/esj-2018-01127 – volume: 233 year: 2021 ident: 10.1016/j.energy.2023.127083_bib16 article-title: Adaptive and efficient optimization model for optimal parameters of proton exchange membrane fuel cells: a comprehensive analysis publication-title: Energy doi: 10.1016/j.energy.2021.121096 – volume: 8 start-page: 10776 year: 2022 ident: 10.1016/j.energy.2023.127083_bib20 article-title: Developed teamwork optimizer for model parameter estimation of the proton exchange membrane fuel cell publication-title: Energy Rep doi: 10.1016/j.egyr.2022.08.177 – volume: 86 start-page: 173 issue: 1–2 year: 2000 ident: 10.1016/j.energy.2023.127083_bib50 article-title: Development and application of a generalised steady-state electrochemical model for a PEM fuel cell publication-title: J Power Sources doi: 10.1016/S0378-7753(99)00484-X – volume: 239 year: 2022 ident: 10.1016/j.energy.2023.127083_bib17 article-title: Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer publication-title: Energy doi: 10.1016/j.energy.2021.122096 – volume: 183 start-page: 912 year: 2019 ident: 10.1016/j.energy.2023.127083_bib11 article-title: Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms publication-title: Energy doi: 10.1016/j.energy.2019.06.152 – volume: 46 start-page: 16465 issue: 30 year: 2021 ident: 10.1016/j.energy.2023.127083_bib12 article-title: Optimal parameter estimation of polymer electrolyte membrane fuel cells model with chaos embedded particle swarm optimization publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.12.203 – volume: 46 start-page: 36454 issue: 73 year: 2021 ident: 10.1016/j.energy.2023.127083_bib15 article-title: Application of the improved chaotic grey wolf optimization algorithm as a novel and efficient method for parameter estimation of solid oxide fuel cells model publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.08.174 – volume: 87 year: 2020 ident: 10.1016/j.energy.2023.127083_bib47 article-title: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.103300 – volume: 45 start-page: 20199 issue: 14 year: 2021 ident: 10.1016/j.energy.2023.127083_bib32 article-title: An efficient modified artificial electric field algorithm for solving optimization problems and parameter estimation of fuel cell publication-title: Int J Energy Res doi: 10.1002/er.7103 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.energy.2023.127083_bib43 article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm publication-title: Knowl Base Syst doi: 10.1016/j.knosys.2015.07.006 – volume: 255 year: 2022 ident: 10.1016/j.energy.2023.127083_bib18 article-title: Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell publication-title: Energy doi: 10.1016/j.energy.2022.124454 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.energy.2023.127083_bib44 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv Eng Software doi: 10.1016/j.advengsoft.2017.07.002 – volume: 201 year: 2019 ident: 10.1016/j.energy.2023.127083_bib23 article-title: Semi-empirical PEM fuel cells model using whale optimization algorithm publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112197 – volume: 388 year: 2022 ident: 10.1016/j.energy.2023.127083_bib49 article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2021.114194 – volume: 36 start-page: 5047 issue: 8 year: 2011 ident: 10.1016/j.energy.2023.127083_bib5 article-title: A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.01.070 – volume: 46 start-page: 9541 issue: 14 year: 2021 ident: 10.1016/j.energy.2023.127083_bib14 article-title: Optimal parameter identification of PEMFC stacks using adaptive Sparrow search algorithm publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.12.107 – year: 2023 ident: 10.1016/j.energy.2023.127083_bib26 – volume: vol. 86 start-page: 1173 year: 2014 ident: 10.1016/j.energy.2023.127083_bib24 – volume: 3 start-page: 109 issue: 2 year: 2019 ident: 10.1016/j.energy.2023.127083_bib4 article-title: Decreasing microbial fuel cell start-up time using multi-walled carbon nanotubes publication-title: Emerg Sci J doi: 10.28991/esj-2019-01174 – volume: 33 start-page: 12169 issue: 18 year: 2021 ident: 10.1016/j.energy.2023.127083_bib8 article-title: A modified farmland fertility optimizer for parameters estimation of fuel cell models publication-title: Neural Comput Appl doi: 10.1007/s00521-021-05821-1 – volume: 182 start-page: 1 year: 2019 ident: 10.1016/j.energy.2023.127083_bib21 article-title: Shark Smell Optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.12.057 – volume: 45 start-page: 14732 issue: 10 year: 2021 ident: 10.1016/j.energy.2023.127083_bib36 article-title: Optimal parameter estimation of PEM fuel cell using slime mould algorithm publication-title: Int J Energy Res doi: 10.1002/er.6750 – volume: 28 start-page: 34511 year: 2021 ident: 10.1016/j.energy.2023.127083_bib13 article-title: Parameter estimation of proton exchange membrane fuel cell using a novel meta-heuristic algorithm publication-title: Environ Sci Pollut Control Ser doi: 10.1007/s11356-021-13097-0 – volume: 247 year: 2022 ident: 10.1016/j.energy.2023.127083_bib22 article-title: Precise modeling of PEM fuel cell using a novel Enhanced Transient Search Optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2022.123530 – volume: 13 issue: 6 year: 2022 ident: 10.1016/j.energy.2023.127083_bib39 article-title: A PEMFC model optimization using the enhanced bald eagle algorithm publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2022.101749 – volume: 8 start-page: 111102 year: 2020 ident: 10.1016/j.energy.2023.127083_bib27 article-title: Coyote optimization algorithm for parameters estimation of various models of solar cells and PV modules publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3000770 – volume: 237 year: 2021 ident: 10.1016/j.energy.2023.127083_bib30 article-title: Investigating dynamic performances of fuel cells using pathfinder algorithm publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114099 – volume: 237 year: 2021 ident: 10.1016/j.energy.2023.127083_bib25 article-title: Optimal estimation of the PEM fuel cells applying deep belief network optimized by improved archimedes optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2021.121532 – year: 2022 ident: 10.1016/j.energy.2023.127083_bib38 article-title: Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer publication-title: Energy doi: 10.1016/j.energy.2022.123830 – volume: 32 start-page: 9383 issue: 13 year: 2020 ident: 10.1016/j.energy.2023.127083_bib45 article-title: Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04452-x – volume: 44 start-page: 1541 issue: 1 year: 2022 ident: 10.1016/j.energy.2023.127083_bib37 article-title: A computationally efficient jaya optimization for fuel cell maximum power tracking publication-title: Energy Sources, Part A Recovery, Util Environ Eff – volume: 45 start-page: 6922 issue: 5 year: 2021 ident: 10.1016/j.energy.2023.127083_bib35 article-title: A novel approach for PEM fuel cell parameter estimation using LSHADE‐EpSin optimization algorithm publication-title: Int J Energy Res doi: 10.1002/er.6282 – volume: 8 start-page: 166998 year: 2020 ident: 10.1016/j.energy.2023.127083_bib29 article-title: Fuel cell parameters estimation via marine predators and political optimizers publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3021754 – volume: 53 start-page: 1168 issue: 4 year: 2014 ident: 10.1016/j.energy.2023.127083_bib46 article-title: Interior search algorithm (ISA): a novel approach for global optimization publication-title: ISA Trans doi: 10.1016/j.isatra.2014.03.018 – volume: 46 start-page: 10644 issue: 8 year: 2022 ident: 10.1016/j.energy.2023.127083_bib10 article-title: Hybrid algorithm for parameter estimation of fuel cell publication-title: Int J Energy Res doi: 10.1002/er.7863 – volume: 14 start-page: 7115 issue: 21 year: 2021 ident: 10.1016/j.energy.2023.127083_bib40 article-title: An efficient parameter estimation algorithm for proton exchange membrane fuel cells publication-title: Energies doi: 10.3390/en14217115 – volume: 537 year: 2020 ident: 10.1016/j.energy.2023.127083_bib42 article-title: STSA: a sine Tree-Seed Algorithm for complex continuous optimization problems publication-title: Phys Stat Mech Appl doi: 10.1016/j.physa.2019.122802 – volume: 172 start-page: 613 issue: 2 year: 2007 ident: 10.1016/j.energy.2023.127083_bib9 article-title: Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.05.019 – volume: 193 year: 2020 ident: 10.1016/j.energy.2023.127083_bib34 article-title: Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method publication-title: Energy doi: 10.1016/j.energy.2019.116616 – volume: 173 start-page: 457 year: 2019 ident: 10.1016/j.energy.2023.127083_bib2 article-title: Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method publication-title: Energy doi: 10.1016/j.energy.2019.02.106 – start-page: 1 year: 2020 ident: 10.1016/j.energy.2023.127083_bib33 article-title: Developed owl search algorithm for parameter estimation of PEMFCs publication-title: Int J Ambient Energy – volume: 51 start-page: 1103 issue: 5 year: 2004 ident: 10.1016/j.energy.2023.127083_bib6 article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2004.834972 |
| SSID | ssj0005899 |
| Score | 2.5226157 |
| Snippet | The proton exchange membrane fuel cell (PEMFC) is a potential source of renewable energy that offers a dual benefit of reducing environmental pollution and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 127083 |
| SubjectTerms | algorithms Artificial hummingbird algorithm electricity energy Fuel cells fuels hummingbirds mathematical models Modeling PEMFC pollution renewable energy sources system optimization |
| Title | On the facile and accurate determination of the highly accurate recent methods to optimize the parameters of different fuel cells: Simulations and analysis |
| URI | https://dx.doi.org/10.1016/j.energy.2023.127083 https://www.proquest.com/docview/2834207177 |
| Volume | 272 |
| WOSCitedRecordID | wos000955229400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKhgQvCAbTxpeMhHipXLX5qG3eBuoEqLRIdFLfLMdx1E5ZUtZ2K_wdvPHPco7thA7QxgMvURKdnbT3i3323f0OoZea8YQmSY9knClYoKSMsEhqQrNM92WcpImlzB_S0YhNp_xTq_Xd58Jc5LQo2GbDF_9V1XAPlG1SZ_9B3XWncAPOQelwBLXD8UaKH9vAxUwq-OAtF6tSa8MI0U597Is3E42gISzOvzZCMASa-ABbWrrifyhhWDmbf9M2rUqacC7DyWk68PVVVu1srfO2cQNUMXaf52drH2Vn6WAt98mWI8CmHRq-040NsW82JZJU5-QNGPbWV_KxnMFD0xod9tLCo9lSMC6smby8lMvZ1UZuXyMIm_irOp-rS-Io2hqrAxq0Fx3jLWch-eMMYDcjTju6-g0d07OTb2Y87-UfjcXxyXAoJoPp5NXiCzG1yIzP3hVmuYV2AxpzGCt3j94Pph-a0CFW1SWt39CnZFZxg78_-G8mz5XJv7JoJvfRPbcUwUcWQg9QSxd76I7PVF_uof1BkwUJgm4aWD5EP8YFBixgizEMCsYePngLY7jMKkGLsUbIYgw7jOFViT3GKvEGY6aDGmPYYAxXGHuNf0GYfQGHsEfo5HgwefuOuCofRIUhXxHDMMjAzlYxS3kvoZx1dca6MoOVbJT0ZUoDWGZHfZXErKejQNGuDCmLmYrAzlBZuI92irLQBwiHIUzfCddcQ1MZKsa7KoiY1LoXyrifHaLQK0IoR4FvKrHkwsc6ngqrPmHUJ6z6DhGpWy0sBcw18tTrWDgz1pqnAjB6TcsXHhICRnnzf8pCl-ulgEVAFJitF_r4BjJP0N3mi3qKdlbna_0M3VYXq_ny_LlD80_08NDt |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+facile+and+accurate+determination+of+the+highly+accurate+recent+methods+to+optimize+the+parameters+of+different+fuel+cells%3A+Simulations+and+analysis&rft.jtitle=Energy+%28Oxford%29&rft.au=Abdel-Basset%2C+Mohamed&rft.au=Mohamed%2C+Reda&rft.au=Abouhawwash%2C+Mohamed&rft.date=2023-06-01&rft.issn=0360-5442&rft.volume=272+p.127083-&rft_id=info:doi/10.1016%2Fj.energy.2023.127083&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |