A comprehensive construction of deep neural network‐based encoder–decoder framework for automatic image captioning systems
This study introduces a novel encoder–decoder framework based on deep neural networks and provides a thorough investigation into the field of automatic picture captioning systems. The suggested model uses a “long short‐term memory” decoder for word prediction and sentence construction, and a “convol...
Uloženo v:
| Vydáno v: | IET image processing Ročník 18; číslo 14; s. 4778 - 4798 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Wiley
01.12.2024
|
| Témata: | |
| ISSN: | 1751-9659, 1751-9667 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study introduces a novel encoder–decoder framework based on deep neural networks and provides a thorough investigation into the field of automatic picture captioning systems. The suggested model uses a “long short‐term memory” decoder for word prediction and sentence construction, and a “convolutional neural network” as an encoder that is skilled at object recognition and spatial information retention. The long short‐term memory network functions as a sequence processor, generating a fixed‐length output vector for final predictions, while the VGG‐19 model is utilized as an image feature extractor. For both training and testing, the study uses a variety of photos from open‐access datasets, such as Flickr8k, Flickr30k, and MS COCO. The Python platform is used for implementation, with Keras and TensorFlow as backends. The experimental findings, which were assessed using the “bilingual evaluation understudy” metric, demonstrate the effectiveness of the suggested methodology in automatically captioning images. By addressing spatial relationships in images and producing logical, contextually relevant captions, the paper advances image captioning technology. Insightful ideas for future study directions are generated by the discussion of the difficulties faced during the experimentation phase. By establishing a strong neural network architecture for automatic picture captioning, this study creates opportunities for future advancement and improvement in the area.
This article presents a comprehensive exploration into the realm of automatic image captioning systems, introducing an innovative deep neural network‐based encoder–decoder framework. The VGG‐19 model is employed as an image feature extractor, and the long short‐term memory network serves as a sequence processor, producing a fixed‐length output vector for final predictions. Diverse images sourced from open‐access datasets, including Flickr8k, Flickr30k, and MS COCO, are utilized for both training and testing. |
|---|---|
| AbstractList | Abstract This study introduces a novel encoder–decoder framework based on deep neural networks and provides a thorough investigation into the field of automatic picture captioning systems. The suggested model uses a “long short‐term memory” decoder for word prediction and sentence construction, and a “convolutional neural network” as an encoder that is skilled at object recognition and spatial information retention. The long short‐term memory network functions as a sequence processor, generating a fixed‐length output vector for final predictions, while the VGG‐19 model is utilized as an image feature extractor. For both training and testing, the study uses a variety of photos from open‐access datasets, such as Flickr8k, Flickr30k, and MS COCO. The Python platform is used for implementation, with Keras and TensorFlow as backends. The experimental findings, which were assessed using the “bilingual evaluation understudy” metric, demonstrate the effectiveness of the suggested methodology in automatically captioning images. By addressing spatial relationships in images and producing logical, contextually relevant captions, the paper advances image captioning technology. Insightful ideas for future study directions are generated by the discussion of the difficulties faced during the experimentation phase. By establishing a strong neural network architecture for automatic picture captioning, this study creates opportunities for future advancement and improvement in the area. This study introduces a novel encoder–decoder framework based on deep neural networks and provides a thorough investigation into the field of automatic picture captioning systems. The suggested model uses a “long short‐term memory” decoder for word prediction and sentence construction, and a “convolutional neural network” as an encoder that is skilled at object recognition and spatial information retention. The long short‐term memory network functions as a sequence processor, generating a fixed‐length output vector for final predictions, while the VGG‐19 model is utilized as an image feature extractor. For both training and testing, the study uses a variety of photos from open‐access datasets, such as Flickr8k, Flickr30k, and MS COCO. The Python platform is used for implementation, with Keras and TensorFlow as backends. The experimental findings, which were assessed using the “bilingual evaluation understudy” metric, demonstrate the effectiveness of the suggested methodology in automatically captioning images. By addressing spatial relationships in images and producing logical, contextually relevant captions, the paper advances image captioning technology. Insightful ideas for future study directions are generated by the discussion of the difficulties faced during the experimentation phase. By establishing a strong neural network architecture for automatic picture captioning, this study creates opportunities for future advancement and improvement in the area. This study introduces a novel encoder–decoder framework based on deep neural networks and provides a thorough investigation into the field of automatic picture captioning systems. The suggested model uses a “long short‐term memory” decoder for word prediction and sentence construction, and a “convolutional neural network” as an encoder that is skilled at object recognition and spatial information retention. The long short‐term memory network functions as a sequence processor, generating a fixed‐length output vector for final predictions, while the VGG‐19 model is utilized as an image feature extractor. For both training and testing, the study uses a variety of photos from open‐access datasets, such as Flickr8k, Flickr30k, and MS COCO. The Python platform is used for implementation, with Keras and TensorFlow as backends. The experimental findings, which were assessed using the “bilingual evaluation understudy” metric, demonstrate the effectiveness of the suggested methodology in automatically captioning images. By addressing spatial relationships in images and producing logical, contextually relevant captions, the paper advances image captioning technology. Insightful ideas for future study directions are generated by the discussion of the difficulties faced during the experimentation phase. By establishing a strong neural network architecture for automatic picture captioning, this study creates opportunities for future advancement and improvement in the area. This article presents a comprehensive exploration into the realm of automatic image captioning systems, introducing an innovative deep neural network‐based encoder–decoder framework. The VGG‐19 model is employed as an image feature extractor, and the long short‐term memory network serves as a sequence processor, producing a fixed‐length output vector for final predictions. Diverse images sourced from open‐access datasets, including Flickr8k, Flickr30k, and MS COCO, are utilized for both training and testing. |
| Author | Khatun, Fatema Sami, Sadia Islam Rahman, Md Mijanur Uzzaman, Ashik Bhuiyan, Md Al‐Amin |
| Author_xml | – sequence: 1 givenname: Md Mijanur orcidid: 0000-0001-5957-6483 surname: Rahman fullname: Rahman, Md Mijanur email: mijan@jkkniu.edu.bd organization: Jatiya Kabi Kazi Nazrul Islam University, Trishal – sequence: 2 givenname: Ashik surname: Uzzaman fullname: Uzzaman, Ashik organization: Jatiya Kabi Kazi Nazrul Islam University, Trishal – sequence: 3 givenname: Sadia Islam surname: Sami fullname: Sami, Sadia Islam organization: Jatiya Kabi Kazi Nazrul Islam University, Trishal – sequence: 4 givenname: Fatema surname: Khatun fullname: Khatun, Fatema organization: Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj – sequence: 5 givenname: Md Al‐Amin surname: Bhuiyan fullname: Bhuiyan, Md Al‐Amin organization: King Faisal University, Hofuf |
| BookMark | eNp9kcFq3DAQhkVJoUnaS59A58ImI1u2pGMITbIQSAjtWcxK461S2zKSt2EvIY9Q6BvmSWLvNj2U0tOMxP9__MN_xA762BNjHwWcCJDmNAypOBFlodUbdihUJRamrtXBn70y79hRzvcAlQFdHbLHM-5iNyT6Rn0OP2h69XlMGzeG2PPYcE808J42CdtpjA8xfX9--rnCTJ5T76Kn9Pz0y9Nu403CjmYNb2LiuBljh2NwPHS4ntg4zNjQr3ne5pG6_J69bbDN9OH3PGZfLz5_Ob9aXN9cLs_PrheuLI1auEorhwU4TQAKlFZSU12Dkb6Com40KNNIchINeDLe1ARlLQunQKDysjxmyz3XR7y3Q5rypK2NGOzuI6a1xTQFbckCCKq1WqFSIEsptUPhyK9EURnvlJ9YsGe5FHNO1FgXRpwPGxOG1gqwcxd27sLuupgsn_6yvEb4p1jsxQ-hpe1_lHZ5e1fsPS9raKBj |
| CitedBy_id | crossref_primary_10_1007_s42979_025_04111_0 |
| Cites_doi | 10.1177/00207314211017469 10.1007/s00034-019-01306-8 10.1002/widm.1356 10.1117/12.2515159 10.1007/978-3-031-45382-3_4 10.1186/s40537-022-00571-w 10.1145/2964284.2964299 10.1017/S1351324918000098 10.3390/s22186816 10.1016/j.neucom.2020.03.087 10.1016/j.patrec.2021.02.009 10.1109/TPAMI.2012.118 10.1109/ACCESS.2019.2917771 10.1016/j.patcog.2021.108285 10.1016/j.eswa.2023.119774 10.1016/B978-0-12-815739-8.00010-9 10.1109/ACCESS.2020.3021508 10.1007/s10462-023-10488-2 10.1109/ICCV.2019.00898 10.1007/978-3-319-10602-1_48 10.1049/ipr2.12367 10.1109/TMM.2019.2951226 10.3390/rs14225675 10.1016/j.neucom.2021.05.103 10.1016/j.cviu.2009.03.008 10.1109/TPAMI.2023.3275156/mm1 10.1109/ACCESS.2020.2965575 10.3390/technologies11020040 10.21203/rs.3.rs-2046359/v1 10.1162/tacl_a_00166 10.1109/TIP.2023.3330086 10.1016/j.neucom.2022.11.074 10.1007/978-3-030-01264-9_42 10.1016/j.patrec.2019.03.021 10.1613/jair.4900 10.1155/2020/3062706 10.1109/ACCESS.2021.3058248 10.1016/j.inffus.2021.02.014 10.1145/3115932 10.1109/RMKMATE59243.2023.10368610 10.3390/sym10110648 10.1109/CVPR42600.2020.01098 10.1016/j.neucom.2023.126287 10.1109/CVPR.2015.7298935 10.1109/TBME.2021.3117407 10.1016/B978-0-12-812133-7.00010-7 10.1109/CVPR.2015.7298754 10.1155/2018/7068349 10.1109/CVPR.2016.503 10.1007/978-3-642-15561-1_2 10.1109/TPAMI.2022.3148210 10.1109/CVPR.2009.5206848 10.1145/3617592 10.1016/j.neucom.2021.03.091 10.1016/j.neucom.2018.05.080 10.1186/s40537-020-00386-7 10.1109/ACCESS.2023.3324052 10.1109/ACCESS.2020.3042484 10.1007/s40860-021-00166-x 10.1016/j.jvcir.2019.102705 10.3115/1073083.1073135 10.1016/j.robot.2020.103625 10.1016/j.knosys.2020.105596 10.1016/j.neucom.2023.02.006 10.1007/s10462-020-09838-1 10.1145/3409388 10.1007/s11220-022-00400-7 10.1155/2024/2918089 10.1109/ICCV.2019.00473 10.1038/s41598-023-27815-w 10.1109/ICECA.2018.8474802 10.1109/CVPR.2015.7298932 10.3390/su13042393 10.32604/cmes.2024.050853 10.1109/CVPR.2015.7298710 10.1109/CVPR42600.2020.01059 10.7717/peerj-cs.1400 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| DBID | 24P AAYXX CITATION DOA |
| DOI | 10.1049/ipr2.13287 |
| DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1751-9667 |
| EndPage | 4798 |
| ExternalDocumentID | oai_doaj_org_article_001e687ba77043448ca1cedb1259dc7d 10_1049_ipr2_13287 IPR213287 |
| Genre | researchArticle |
| GroupedDBID | .DC 0R~ 1OC 24P 29I 5GY 6IK 8VB AAHHS AAHJG AAJGR ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS ESX GROUPED_DOAJ HZ~ IAO IFIPE IPLJI ITC JAVBF LAI MCNEO MS~ O9- OCL OK1 P2P QWB RIE RNS ROL RUI ZL0 4.4 8FE 8FG AAMMB AAYXX ABJCF AEFGJ AFFHD AFKRA AGXDD AIDQK AIDYY ARAPS BENPR BGLVJ CCPQU CITATION EJD HCIFZ IDLOA K1G L6V M43 M7S P62 PHGZM PHGZT PQGLB PTHSS S0W WIN |
| ID | FETCH-LOGICAL-c3397-c587ca20c8e007078748e66094d5026f8079f4ec4a90de9d96e03642c701a7d43 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001362538400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-9659 |
| IngestDate | Fri Oct 03 12:44:41 EDT 2025 Wed Oct 29 21:20:17 EDT 2025 Tue Nov 18 21:59:21 EST 2025 Wed Jan 22 17:14:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3397-c587ca20c8e007078748e66094d5026f8079f4ec4a90de9d96e03642c701a7d43 |
| ORCID | 0000-0001-5957-6483 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13287 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_001e687ba77043448ca1cedb1259dc7d crossref_citationtrail_10_1049_ipr2_13287 crossref_primary_10_1049_ipr2_13287 wiley_primary_10_1049_ipr2_13287_IPR213287 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IET image processing |
| PublicationYear | 2024 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2021; 69 2023; 32 2023; 223 2023; 9 2023; 546 2024; 140 2022; 23 2020; 16 2024; 141 2020; 401 2022; 22 2020; 10 2021; 72 2019; 123 2020; 8 2022; 122 2020; 7 2014; 2 2020; 53 2019; 22 2010; 114 2024; 2024 2011; 24 2020; 133 2021; 9 2019; 7 2023; 13 2015; 6 2022; 470 2023; 11 2023; 56 2021; 146 2010 2019; 10962 2023; 520 2009 2022; 45 2020; 39 2002 2012; 35 2021; 51 2018; 24 2016; 55 2021; 13 2018; 2018 2020; 2020 2023 2022 2021 2020 2019; 43 2018; 311 2022; 9 2020; 194 2019 2018 2022; 14 2020; 69 2017 2016 2015 2014 2021; 452 2018; 10 2022; 16 2018; 14 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_72_1 e_1_2_11_91_1 Sugano Y. (e_1_2_11_24_1) 2016 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 Kiros R. (e_1_2_11_26_1) 2014 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 Rahman M.M. (e_1_2_11_11_1) 2015; 6 Ordonez V. (e_1_2_11_43_1) 2011; 24 e_1_2_11_83_1 Hardeniya N. (e_1_2_11_75_1) 2016 e_1_2_11_60_1 e_1_2_11_81_1 Rahman M.M. (e_1_2_11_74_1) 2015; 6 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_89_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_87_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_71_1 e_1_2_11_92_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_79_1 e_1_2_11_14_1 Kalash M. (e_1_2_11_56_1) 2019; 43 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_3_1 e_1_2_11_49_1 Huang Z. (e_1_2_11_58_1) 2020 e_1_2_11_82_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_18_1 Liu X. (e_1_2_11_29_1) 2020; 16 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 Yin L. (e_1_2_11_34_1) 2024; 141 Mao J. (e_1_2_11_20_1) 2014 |
| References_xml | – volume: 123 start-page: 89 year: 2019 end-page: 95 article-title: Image caption generation with high‐level image features publication-title: Pattern Recognit. Lett. – year: 2023 article-title: Deep learning based object detection for resource constrained devices‐systematic review, future trends and challenges ahead publication-title: Neurocomputing – volume: 39 start-page: 776 year: 2020 end-page: 788 article-title: An integrated hybrid CNN–RNN model for visual description and generation of captions publication-title: Circuits, Systems, and Signal Process. – volume: 223 year: 2023 article-title: Transformer‐based local‐global guidance for image captioning publication-title: Expert Syst. Appl. – volume: 69 year: 2020 article-title: Research on image feature extraction and retrieval algorithms based on convolutional neural network publication-title: J. Visual Commun. Image Represent. – volume: 311 start-page: 291 year: 2018 end-page: 304 article-title: A survey on automatic image caption generation publication-title: Neurocomputing – volume: 10962 year: 2019 – volume: 53 start-page: 5929 year: 2020 end-page: 5955 article-title: A review on the long short‐term memory model publication-title: Artif. Intell. Rev. – volume: 35 start-page: 797 issue: 4 year: 2012 end-page: 812 article-title: Automatic caption generation for news images publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 470 start-page: 443 year: 2022 end-page: 456 article-title: An introduction to deep learning in natural language processing: models, techniques, and tools publication-title: Neurocomputing – volume: 11 start-page: 115477 year: 2023 end-page: 115492 article-title: Vision‐text cross‐modal fusion for accurate video captioning publication-title: IEEE Access – start-page: 40 year: 2023 end-page: 52 article-title: Descriptive and coherent paragraph generation for image paragraph captioning using vision transformer and post‐processing – volume: 13 start-page: 2393 issue: 4 year: 2021 article-title: Prospective methodologies in hybrid renewable energy systems for energy prediction using artificial neural networks publication-title: Sustainability – volume: 8 start-page: 218386 year: 2020 end-page: 218400 article-title: Automatic image and video caption generation with deep learning: a concise review and algorithmic overlap publication-title: IEEE Access – volume: 401 start-page: 249 year: 2020 end-page: 256 article-title: Evolutionary recurrent neural network for image captioning publication-title: Neurocomputing – volume: 122 year: 2022 article-title: Protect, show, attend and tell: empowering image captioning models with ownership protection publication-title: Pattern Recognit. – year: 2021 article-title: Image captioning using deep neural network based model – start-page: 988 year: 2016 end-page: 997 article-title: Image captioning with deep bidirectional LSTMs – volume: 24 start-page: 1143 year: 2011 end-page: 1151 article-title: Im2text: describing images using 1 million captioned photographs publication-title: Adv. Neural Inf. Process. Syst. – volume: 72 start-page: 126 year: 2021 end-page: 146 article-title: Image synthesis with adversarial networks: a comprehensive survey and case studies publication-title: Inf. Fusion – volume: 7 start-page: 66358 year: 2019 end-page: 66368 article-title: Multilayer dense attention model for image caption publication-title: IEEE Access – year: 2014 article-title: Unifying visual‐semantic embeddings with multimodal neural language models publication-title: arXiv:1411.2539 – start-page: 8888 year: 2019 end-page: 8897 article-title: Reflective decoding network for image captioning – volume: 14 start-page: 5675 issue: 22 year: 2022 article-title: Consecutive pre‐training: a knowledge transfer learning strategy with relevant unlabeled data for remote sensing domain publication-title: Remote. Sens. – start-page: 2048 year: 2015 end-page: 2057 article-title: Show, attend and tell: Neural image caption generation with visual attention – year: 2016 article-title: Seeing with humans: gaze‐assisted neural image captioning publication-title: arXiv:1608.05203 – volume: 140 start-page: 2315 issue: 3 year: 2024 end-page: 2347 article-title: AFBNet: a lightweight adaptive feature fusion module for super‐resolution algorithms publication-title: Comput. Model. Eng. Sci. – start-page: 281 year: 2017 end-page: 314 – start-page: 3156 year: 2015 end-page: 3164 article-title: Show and tell: a neural image caption generator – volume: 32 start-page: 6303 year: 2023 end-page: 6317 article-title: GQE‐Net: a graph‐based quality enhancement network for point cloud color attribute publication-title: IEEE Trans. Image Process. – year: 2022 – start-page: 4651 year: 2016 end-page: 4659 article-title: Image captioning with semantic attention – volume: 10 start-page: 648 issue: 11 year: 2018 article-title: A comparison of regularization techniques in deep neural networks publication-title: Symmetry – year: 2014 article-title: Deep captioning with multimodal recurrent neural networks (M‐RNN) publication-title: arXiv:1412.6632 – volume: 6 start-page: 218 issue: 3 year: 2015 end-page: 222 article-title: An implementation for combining neural networks and genetic algorithms publication-title: Int. J. Comput. Sci. Technol. – volume: 16 start-page: 311 issue: 2 year: 2022 end-page: 332 article-title: A thorough review of models, evaluation metrics, and datasets on image captioning publication-title: IET Image Proc. – volume: 9 start-page: 1 issue: 1 year: 2022 end-page: 16 article-title: Image captioning model using attention and object features to mimic human image understanding publication-title: J. Big Data – start-page: 684 year: 2018 end-page: 699 article-title: Exploring visual relationship for image captioning – volume: 8 start-page: 170461 year: 2020 end-page: 170495 article-title: Exploring deep learning‐based architecture, strategies, applications and current trends in generic object detection: a comprehensive review publication-title: IEEE Access – start-page: 740 year: 2014 end-page: 755 article-title: Microsoft COCO: common objects in context – volume: 22 start-page: 2149 issue: 8 year: 2019 end-page: 2162 article-title: Show, tell, and polish: Ruminant decoding for image captioning publication-title: IEEE Trans. Multimedia – start-page: 1473 year: 2015 end-page: 1482 article-title: From captions to visual concepts and back – start-page: 10578 year: 2020 end-page: 10587 article-title: Meshed‐memory transformer for image captioning – volume: 194 year: 2020 article-title: A review of deep learning with special emphasis on architectures, applications and recent trends publication-title: Knowl.‐Based Syst. – volume: 2018 year: 2018 article-title: Deep learning for computer vision: a brief review publication-title: Comput. Intell. Neurosci. – volume: 2 start-page: 67 year: 2014 end-page: 78 article-title: From image descriptions to visual denotations: new similarity metrics for semantic inference over event descriptions publication-title: Trans. Assoc. Comput. Linguist. – start-page: 4634 year: 2019 end-page: 4643 article-title: Attention on attention for image captioning – volume: 14 start-page: 1 issue: 2s year: 2018 end-page: 20 article-title: Image captioning with deep bidirectional LSTMs and multi‐task learning publication-title: ACM Trans. Multimedia Comput., Commun., Appl. – volume: 56 start-page: 13619 year: 2023 end-page: 13661 article-title: A comprehensive survey on image captioning: from handcrafted to deep learning‐based techniques, a taxonomy and open research issues publication-title: Artif. Intell. Rev. – volume: 55 start-page: 409 year: 2016 end-page: 442 article-title: Automatic description generation from images: a survey of models, datasets, and evaluation measures publication-title: J. Artif. Intell. Res. – volume: 146 start-page: 70 year: 2021 end-page: 76 article-title: Leveraging auxiliary image descriptions for dense video captioning publication-title: Pattern Recognit. Letters – volume: 69 start-page: 1173 issue: 3 year: 2021 end-page: 1185 article-title: Domain adaptation for medical image analysis: a survey publication-title: IEEE Trans. Biomed. Eng. – volume: 6 start-page: 107 issue: 2 year: 2015 end-page: 117 article-title: Comparison study and result analysis of improved back‐propagation algorithms in Bangla speech recognition publication-title: Int. J. Appl. Res. Inf. Technol. Comput. – start-page: 173 year: 2020 end-page: 191 – volume: 2020 year: 2020 article-title: An overview of image caption generation methods publication-title: Comput. Intell. Neurosci. – volume: 2024 issue: 1 year: 2024 article-title: Cobotics: the evolving roles and prospects of next‐generation collaborative robots in Industry 5.0 publication-title: J. Rob. – volume: 9 start-page: 43799 year: 2021 end-page: 43823 article-title: Video question‐answering techniques, benchmark datasets and evaluation metrics leveraging video captioning: a comprehensive survey publication-title: IEEE Access – start-page: 311 year: 2002 end-page: 318 article-title: Bleu: a method for automatic evaluation of machine translation – start-page: 3128 year: 2015 end-page: 3137 article-title: Deep visual‐semantic alignments for generating image descriptions – volume: 16 start-page: 1 issue: 4 year: 2020 end-page: 22 article-title: Adaptive attention‐based high‐level semantic introduction for image caption publication-title: ACM Trans. Multimedia Comput., Commun., Appl. – volume: 24 start-page: 467 issue: 3 year: 2018 end-page: 489 article-title: Where to put the image in an image caption generator publication-title: Nat. Lang. Eng. – volume: 133 year: 2020 article-title: Visual place recognition by spatial matching of high‐level CNN features publication-title: Rob. Auton. Syst. – volume: 51 start-page: 446 issue: 4 year: 2021 end-page: 461 article-title: A comprehensive study of artificial intelligence and machine learning approaches in confronting the coronavirus (COVID‐19) pandemic publication-title: Int. J. Health Serv. – volume: 546 year: 2023 article-title: Deep image captioning: a review of methods, trends and future challenges publication-title: Neurocomputing – start-page: 656 year: 2018 end-page: 660 article-title: Transfer learning for image classification – volume: 10 issue: 3 year: 2020 article-title: Bias in data‐driven artificial intelligence systems—an introductory survey publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery – volume: 7 start-page: 1 year: 2020 end-page: 17 article-title: Arabic text summarization using deep learning approach publication-title: J. Big Data – year: 2016 – volume: 45 start-page: 539 issue: 1 year: 2022 end-page: 559 article-title: From show to tell: a survey on deep learning‐based image captioning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2023 article-title: Multimodal learning with transformers: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 9 start-page: 183 year: 2022 end-page: 200 article-title: A comprehensive study and performance analysis of deep neural network‐based approaches in wind time‐series forecasting publication-title: J. Reliab. Intell. Environ. – start-page: 15 year: 2010 end-page: 29 article-title: Every picture tells a story: Generating sentences from images – volume: 520 start-page: 376 year: 2023 end-page: 385 article-title: MIGT: Multi‐modal image inpainting guided with text publication-title: Neurocomputing – start-page: 1072 year: 2015 end-page: 1080 article-title: Salicon: saliency in context – volume: 23 start-page: 31 issue: 1 year: 2022 article-title: Image captioning using hybrid LSTM‐RNN with deep features publication-title: Sens. Imaging – volume: 43 start-page: 204 issue: 1 year: 2019 end-page: 219 article-title: Relative saliency and ranking: models, metrics, data and benchmarks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 11 start-page: 40 issue: 2 year: 2023 article-title: A review of deep transfer learning and recent advancements publication-title: Technologies – start-page: 139 year: 2010 end-page: 147 article-title: Collecting image annotations using Amazon's mechanical Turk – volume: 9 year: 2023 article-title: The multi‐modal fusion in visual question answering: a review of attention mechanisms publication-title: PeerJ Comput. Sci. – volume: 56 start-page: 1 issue: 3 year: 2023 end-page: 39 article-title: Deep learning approaches on image captioning: a review publication-title: ACM Comput. Surv. – volume: 114 start-page: 419 issue: 4 year: 2010 end-page: 428 article-title: The segmented and annotated IAPR TC‐12 benchmark publication-title: Comput. Vision Image Understanding – start-page: 6456 year: 2018 end-page: 6466 article-title: Turbo learning for captionbot and drawingbot – volume: 452 start-page: 48 year: 2021 end-page: 62 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing – start-page: 1 year: 2023 end-page: 5 article-title: Seeing with sound: automatic image captioning with auditory output for the visually impaired – volume: 141 start-page: 1 issue: 1 year: 2024 end-page: 20 article-title: Convolution‐transformer for image feature extraction publication-title: Comput. Model. Eng. Sci. – volume: 56 start-page: 13619 issue: 11 year: 2023 end-page: 13661 article-title: A comprehensive survey on image captioning: from handcrafted to deep learning‐based techniques, a taxonomy and open research issues publication-title: Artif. Intell. Rev. – volume: 22 start-page: 6816 issue: 18 year: 2022 article-title: A review of multi‐modal learning from the text‐guided visual processing viewpoint publication-title: Sensors – year: 2020 article-title: Pixel‐BERT: aligning image pixels with text by deep multi‐modal transformers publication-title: arXiv:2004.00849 – start-page: 248 year: 2009 end-page: 255 article-title: ImageNet: a large‐scale hierarchical image database – volume: 13 start-page: 791 issue: 1 year: 2023 article-title: A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X‐ray images publication-title: Sci. Rep. – start-page: 10971 year: 2020 end-page: 10980 article-title: X‐linear attention networks for image captioning – volume: 8 start-page: 11279 year: 2020 end-page: 11288 article-title: Text summarization method based on double attention pointer network publication-title: IEEE Access – ident: e_1_2_11_41_1 – ident: e_1_2_11_16_1 doi: 10.1177/00207314211017469 – ident: e_1_2_11_55_1 doi: 10.1007/s00034-019-01306-8 – ident: e_1_2_11_81_1 doi: 10.1002/widm.1356 – ident: e_1_2_11_28_1 doi: 10.1117/12.2515159 – ident: e_1_2_11_49_1 doi: 10.1007/978-3-031-45382-3_4 – ident: e_1_2_11_6_1 doi: 10.1186/s40537-022-00571-w – ident: e_1_2_11_23_1 doi: 10.1145/2964284.2964299 – ident: e_1_2_11_9_1 doi: 10.1017/S1351324918000098 – ident: e_1_2_11_47_1 doi: 10.3390/s22186816 – ident: e_1_2_11_53_1 doi: 10.1016/j.neucom.2020.03.087 – ident: e_1_2_11_66_1 doi: 10.1016/j.patrec.2021.02.009 – ident: e_1_2_11_73_1 doi: 10.1109/TPAMI.2012.118 – ident: e_1_2_11_7_1 doi: 10.1109/ACCESS.2019.2917771 – ident: e_1_2_11_62_1 doi: 10.1016/j.patcog.2021.108285 – year: 2014 ident: e_1_2_11_20_1 article-title: Deep captioning with multimodal recurrent neural networks (M‐RNN) publication-title: arXiv:1412.6632 – ident: e_1_2_11_78_1 doi: 10.1016/j.eswa.2023.119774 – ident: e_1_2_11_54_1 doi: 10.1016/B978-0-12-815739-8.00010-9 – ident: e_1_2_11_57_1 doi: 10.1109/ACCESS.2020.3021508 – year: 2014 ident: e_1_2_11_26_1 article-title: Unifying visual‐semantic embeddings with multimodal neural language models publication-title: arXiv:1411.2539 – ident: e_1_2_11_52_1 doi: 10.1007/s10462-023-10488-2 – ident: e_1_2_11_36_1 doi: 10.1109/ICCV.2019.00898 – year: 2016 ident: e_1_2_11_24_1 article-title: Seeing with humans: gaze‐assisted neural image captioning publication-title: arXiv:1608.05203 – ident: e_1_2_11_44_1 doi: 10.1007/978-3-319-10602-1_48 – ident: e_1_2_11_50_1 doi: 10.1049/ipr2.12367 – ident: e_1_2_11_60_1 doi: 10.1109/TMM.2019.2951226 – ident: e_1_2_11_90_1 doi: 10.3390/rs14225675 – ident: e_1_2_11_70_1 doi: 10.1016/j.neucom.2021.05.103 – ident: e_1_2_11_45_1 doi: 10.1016/j.cviu.2009.03.008 – volume: 141 start-page: 1 issue: 1 year: 2024 ident: e_1_2_11_34_1 article-title: Convolution‐transformer for image feature extraction publication-title: Comput. Model. Eng. Sci. – ident: e_1_2_11_59_1 doi: 10.1109/TPAMI.2023.3275156/mm1 – ident: e_1_2_11_68_1 doi: 10.1109/ACCESS.2020.2965575 – ident: e_1_2_11_91_1 doi: 10.3390/technologies11020040 – ident: e_1_2_11_93_1 doi: 10.21203/rs.3.rs-2046359/v1 – volume: 6 start-page: 218 issue: 3 year: 2015 ident: e_1_2_11_11_1 article-title: An implementation for combining neural networks and genetic algorithms publication-title: Int. J. Comput. Sci. Technol. – ident: e_1_2_11_42_1 doi: 10.1162/tacl_a_00166 – ident: e_1_2_11_32_1 doi: 10.1109/TIP.2023.3330086 – ident: e_1_2_11_79_1 doi: 10.1016/j.neucom.2022.11.074 – ident: e_1_2_11_35_1 doi: 10.1007/978-3-030-01264-9_42 – ident: e_1_2_11_48_1 doi: 10.1016/j.patrec.2019.03.021 – volume: 43 start-page: 204 issue: 1 year: 2019 ident: e_1_2_11_56_1 article-title: Relative saliency and ranking: models, metrics, data and benchmarks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: e_1_2_11_10_1 doi: 10.1613/jair.4900 – ident: e_1_2_11_12_1 doi: 10.1155/2020/3062706 – ident: e_1_2_11_87_1 doi: 10.1109/ACCESS.2021.3058248 – ident: e_1_2_11_86_1 doi: 10.1016/j.inffus.2021.02.014 – ident: e_1_2_11_61_1 doi: 10.1145/3115932 – ident: e_1_2_11_71_1 doi: 10.1109/RMKMATE59243.2023.10368610 – ident: e_1_2_11_82_1 doi: 10.3390/sym10110648 – ident: e_1_2_11_38_1 doi: 10.1109/CVPR42600.2020.01098 – ident: e_1_2_11_17_1 doi: 10.1016/j.neucom.2023.126287 – ident: e_1_2_11_18_1 doi: 10.1109/CVPR.2015.7298935 – ident: e_1_2_11_85_1 doi: 10.1109/TBME.2021.3117407 – ident: e_1_2_11_77_1 doi: 10.1016/B978-0-12-812133-7.00010-7 – ident: e_1_2_11_25_1 doi: 10.1109/CVPR.2015.7298754 – ident: e_1_2_11_30_1 – ident: e_1_2_11_2_1 doi: 10.1155/2018/7068349 – ident: e_1_2_11_22_1 doi: 10.1109/CVPR.2016.503 – ident: e_1_2_11_40_1 doi: 10.1007/978-3-642-15561-1_2 – ident: e_1_2_11_19_1 – ident: e_1_2_11_31_1 doi: 10.1109/TPAMI.2022.3148210 – ident: e_1_2_11_21_1 doi: 10.1109/CVPR.2009.5206848 – ident: e_1_2_11_5_1 doi: 10.1145/3617592 – ident: e_1_2_11_51_1 doi: 10.1016/j.neucom.2021.03.091 – ident: e_1_2_11_64_1 doi: 10.1016/j.neucom.2018.05.080 – ident: e_1_2_11_67_1 doi: 10.1186/s40537-020-00386-7 – ident: e_1_2_11_88_1 doi: 10.1109/ACCESS.2023.3324052 – ident: e_1_2_11_92_1 – ident: e_1_2_11_8_1 doi: 10.1109/ACCESS.2020.3042484 – ident: e_1_2_11_15_1 doi: 10.1007/s40860-021-00166-x – ident: e_1_2_11_72_1 doi: 10.1016/j.jvcir.2019.102705 – ident: e_1_2_11_76_1 doi: 10.3115/1073083.1073135 – volume-title: Natural Language Processing: Python and NLTK year: 2016 ident: e_1_2_11_75_1 – year: 2020 ident: e_1_2_11_58_1 article-title: Pixel‐BERT: aligning image pixels with text by deep multi‐modal transformers publication-title: arXiv:2004.00849 – ident: e_1_2_11_65_1 doi: 10.1016/j.robot.2020.103625 – ident: e_1_2_11_80_1 doi: 10.1016/j.knosys.2020.105596 – ident: e_1_2_11_83_1 doi: 10.1016/j.neucom.2023.02.006 – ident: e_1_2_11_14_1 doi: 10.1007/s10462-020-09838-1 – volume: 16 start-page: 1 issue: 4 year: 2020 ident: e_1_2_11_29_1 article-title: Adaptive attention‐based high‐level semantic introduction for image caption publication-title: ACM Trans. Multimedia Comput., Commun., Appl. doi: 10.1145/3409388 – ident: e_1_2_11_63_1 doi: 10.1007/s11220-022-00400-7 – ident: e_1_2_11_84_1 doi: 10.1155/2024/2918089 – ident: e_1_2_11_37_1 doi: 10.1109/ICCV.2019.00473 – volume: 24 start-page: 1143 year: 2011 ident: e_1_2_11_43_1 article-title: Im2text: describing images using 1 million captioned photographs publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_11_4_1 doi: 10.1038/s41598-023-27815-w – volume: 6 start-page: 107 issue: 2 year: 2015 ident: e_1_2_11_74_1 article-title: Comparison study and result analysis of improved back‐propagation algorithms in Bangla speech recognition publication-title: Int. J. Appl. Res. Inf. Technol. Comput. – ident: e_1_2_11_69_1 doi: 10.1109/ICECA.2018.8474802 – ident: e_1_2_11_27_1 doi: 10.1109/CVPR.2015.7298932 – ident: e_1_2_11_3_1 doi: 10.1007/s10462-023-10488-2 – ident: e_1_2_11_13_1 doi: 10.3390/su13042393 – ident: e_1_2_11_33_1 doi: 10.32604/cmes.2024.050853 – ident: e_1_2_11_46_1 doi: 10.1109/CVPR.2015.7298710 – ident: e_1_2_11_39_1 doi: 10.1109/CVPR42600.2020.01059 – ident: e_1_2_11_89_1 doi: 10.7717/peerj-cs.1400 |
| SSID | ssj0059085 |
| Score | 2.3465233 |
| Snippet | This study introduces a novel encoder–decoder framework based on deep neural networks and provides a thorough investigation into the field of automatic picture... Abstract This study introduces a novel encoder–decoder framework based on deep neural networks and provides a thorough investigation into the field of... |
| SourceID | doaj crossref wiley |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 4778 |
| SubjectTerms | CNN Encoder Deep Learning Image Captioning Image Feature Extractor LSTM Decoder Pre‐trained VGG‐19 Model |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHrz4FtcXAb0oVLttmsdRRVEQEVHwVtLMFBd0d9lVj-JPEPyH_hInSdcHiF68tSU0ZTKdma_5-g1jmyKtrZGVTnILMhGgqsRWlUugqIxuIxSqCpL5p-rsTF9fm_Mvrb48JyzKA0fD7VIYRalVZZVKRU5gwtm2Q6goMRtwCnz0TZUZgakYg30j7yL8CumbyMvCjIRJhdnt9AfZDmEwT6L7koqCYv_3CjWkmKMZNtXUhnwvPtMsG8PuHJtu6kTevIXDefa0xz0TfIA3kX1OZ586sLxXc0Dsc69USXfrRp732_OLT1jAvXAl4ODt-RUwHPF6xM_iVMBy-3DfCzKuvHNHsYY722--2fKo-jxcYFdHh5cHx0nTRyFxOZUbiSu0cjZLncao7qOERikJ2EFBEKzWZL9aoBPWpIAGjES_O5k5lbatApEvsvFur4tLjEtB-Ml6RUOCWdpkFmuVAeQSnFNtKFpsa2TS0jUi477XxW0ZNruFKb35y2D-Ftv4GNuP0ho_jtr3K_MxwsthhwvkJGXjJOVfTtJi22Fdf5mnPDm_yMLR8n_MuMImMyp_IvFllY2TE-Aam3CP953hYD046zsWvvDN priority: 102 providerName: Directory of Open Access Journals |
| Title | A comprehensive construction of deep neural network‐based encoder–decoder framework for automatic image captioning systems |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13287 https://doaj.org/article/001e687ba77043448ca1cedb1259dc7d |
| Volume | 18 |
| WOSCitedRecordID | wos001362538400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-9667 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9q64Mv1vpBz2oJ6IvC6n5k8wG-VGlpoRyHKPZtSTJZPah3x171UfonFPwP-5c4SXavFKRQ-rJkl9nNkskkv0kmvwF4zfPWaGFVVhkUGUdpM2Oty7C2WhUea2kjZf6xHI_VyYmerMGH4SxM4odYLbgFy4jjdTBwY1MWEgK1pMTpoivfkS-l5D3YKIpKhj5d8skwDodk3nU8DhkSyYtaD-SkXL-_evfadBRZ-6-j1DjNHGze7QcfwcMeXrK91B-2YM3PHsNmDzVZb8jLJ_Bnj4Vg8s7_SAHsdHdFJcvmLUPvFyyQXdLXZilU_PL8Isx5yAL3Jfru8vwv-lhi7RDixQgDM_PrbB6ZYNn0Jw1XzJlFv-zLEnH08il8Pdj_8ukw61MxZK4ixJK5WklnytwpnwiCJFdeCPINsSYvrlW51C33jhudo9eohQ8bnKWTeWEk8uoZrM_mM78NTHBywUwgRSRPTenS-FaWiJVA52SB9QjeDBppXM9THtJlnDZxv5zrJjRsExt2BK9WsovEzvFfqY9BsSuJwKgdH8y7701voCG2zwslrZEy5xU5rc4UzqMlAKjRSRzB26jsG-ppjiafy1h6fhvhHXhQElJKMTIvYJ2U7V_Cfff7bLrsdmOf3o1LBXT9djT-B3I0_y8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-0CvrS-kmvWg3oi8Lavd1sPh5rsbR4HodU6NuSzczqgb079qqP0j9B8D_sX2Im2btSEEF8yy6zH2Qymfklk98AvJR566xqTFY6VJlE3WSuaXyGVWPNkLDSTaTMH-nx2Jye2kmfm8NnYRI_xHrBjS0jztds4LwgnQCnZJLM6aIr3gQwZfRNuCWDm-ECBoWcrCZiruZdxfOQXEleVXbFTirt3tWz1_xRpO2_HqZGP3O49Z9_eA82-wBT7KcRcR9u0OwBbPXBpuhNefkQfuwLTifv6EtKYQ9XV2SyYt4KJFoIprsMb5ulZPHLi5_s9VAw-yVSd3nxCym2RLtK8hIhChbu2_k8csGK6VmYsIR3i37hVyTq6OUj-HT47uTgKOuLMWS-DDFL5iujvStybyhRBGlpSKmADrEKOK41ubatJC-dzZEsWkW8xVl4nQ-dRlk-ho3ZfEbbIJQMIMwxLWLAasYWjlpdIJYKvddDrAbwaqWS2vdM5Vww42sdd8ylrblj69ixA3ixll0kfo4_Sr1lza4lmFM73ph3n-veRDm7j5TRjdM6l2WArd4NPWETQkCLXuMAXkdt_-U79fHkYxFbO_8i_BzuHJ18GNWj4_H7J3C3CHFTyph5ChtB8bQLt_338-myexYH-G-BUwEc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3daxQxEMAHrSK-WD_xtNWAviis3dvN5uOxrR4Wy3GIQt-WbGZWD_Ru2as-Sv8Ewf-wf4mZZO9KQQTxLbvMfpDJJDPJ5BeA5zJvnVWNyUqHKpOom8w1jc-waqwZE1a6icj8Yz2dmpMTOxtyc3gvTOJDbCbc2DJif80GTh22KeCUDMmcd33xKgRTRl-Fa7IKnSyDneVs3RHzad5V3A_JJ8mryq7ppNLuXTx7aTyK2P7LbmocZybb__mHt-HW4GCK_dQi7sAVWtyF7cHZFIMpr-7Bj33B6eQ9fU4p7OHqAiYrlq1Aok4w7jK8bZGSxc_PfvKoh4Lpl0j9-dkvpFgS7TrJSwQvWLhvp8vIghXzr6HDEt51w8SvSOjo1X34OHnz4fBtNhzGkPky-CyZr4z2rsi9oYQI0tKQUiE6xCrEca3JtW0leelsjmTRKuIlzsLrfOw0yvIBbC2WC3oIQskQhDnGIoZYzdjCUasLxFKh93qM1QherFVS-4FUzgdmfKnjirm0NVdsHSt2BM82sl3ic_xR6oA1u5Fgpna8sew_1YOJcnYfKaMbp3UuyxC2ejf2hE1wAS16jSN4GbX9l-_UR7P3RSw9-hfhp3Bj9npSHx9N3z2Gm0Vwm1LCzA5sBb3TLlz330_nq_5JbN-_ASXtAKA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+construction+of+deep+neural+network%E2%80%90based+encoder%E2%80%93decoder+framework+for+automatic+image+captioning+systems&rft.jtitle=IET+image+processing&rft.au=Rahman%2C+Md+Mijanur&rft.au=Uzzaman%2C+Ashik&rft.au=Sami%2C+Sadia+Islam&rft.au=Khatun%2C+Fatema&rft.date=2024-12-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=18&rft.issue=14&rft.spage=4778&rft.epage=4798&rft_id=info:doi/10.1049%2Fipr2.13287&rft.externalDBID=10.1049%252Fipr2.13287&rft.externalDocID=IPR213287 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |