A comprehensive construction of deep neural network‐based encoder–decoder framework for automatic image captioning systems

This study introduces a novel encoder–decoder framework based on deep neural networks and provides a thorough investigation into the field of automatic picture captioning systems. The suggested model uses a “long short‐term memory” decoder for word prediction and sentence construction, and a “convol...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET image processing Ročník 18; číslo 14; s. 4778 - 4798
Hlavní autoři: Rahman, Md Mijanur, Uzzaman, Ashik, Sami, Sadia Islam, Khatun, Fatema, Bhuiyan, Md Al‐Amin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Wiley 01.12.2024
Témata:
ISSN:1751-9659, 1751-9667
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study introduces a novel encoder–decoder framework based on deep neural networks and provides a thorough investigation into the field of automatic picture captioning systems. The suggested model uses a “long short‐term memory” decoder for word prediction and sentence construction, and a “convolutional neural network” as an encoder that is skilled at object recognition and spatial information retention. The long short‐term memory network functions as a sequence processor, generating a fixed‐length output vector for final predictions, while the VGG‐19 model is utilized as an image feature extractor. For both training and testing, the study uses a variety of photos from open‐access datasets, such as Flickr8k, Flickr30k, and MS COCO. The Python platform is used for implementation, with Keras and TensorFlow as backends. The experimental findings, which were assessed using the “bilingual evaluation understudy” metric, demonstrate the effectiveness of the suggested methodology in automatically captioning images. By addressing spatial relationships in images and producing logical, contextually relevant captions, the paper advances image captioning technology. Insightful ideas for future study directions are generated by the discussion of the difficulties faced during the experimentation phase. By establishing a strong neural network architecture for automatic picture captioning, this study creates opportunities for future advancement and improvement in the area. This article presents a comprehensive exploration into the realm of automatic image captioning systems, introducing an innovative deep neural network‐based encoder–decoder framework. The VGG‐19 model is employed as an image feature extractor, and the long short‐term memory network serves as a sequence processor, producing a fixed‐length output vector for final predictions. Diverse images sourced from open‐access datasets, including Flickr8k, Flickr30k, and MS COCO, are utilized for both training and testing.
AbstractList Abstract This study introduces a novel encoder–decoder framework based on deep neural networks and provides a thorough investigation into the field of automatic picture captioning systems. The suggested model uses a “long short‐term memory” decoder for word prediction and sentence construction, and a “convolutional neural network” as an encoder that is skilled at object recognition and spatial information retention. The long short‐term memory network functions as a sequence processor, generating a fixed‐length output vector for final predictions, while the VGG‐19 model is utilized as an image feature extractor. For both training and testing, the study uses a variety of photos from open‐access datasets, such as Flickr8k, Flickr30k, and MS COCO. The Python platform is used for implementation, with Keras and TensorFlow as backends. The experimental findings, which were assessed using the “bilingual evaluation understudy” metric, demonstrate the effectiveness of the suggested methodology in automatically captioning images. By addressing spatial relationships in images and producing logical, contextually relevant captions, the paper advances image captioning technology. Insightful ideas for future study directions are generated by the discussion of the difficulties faced during the experimentation phase. By establishing a strong neural network architecture for automatic picture captioning, this study creates opportunities for future advancement and improvement in the area.
This study introduces a novel encoder–decoder framework based on deep neural networks and provides a thorough investigation into the field of automatic picture captioning systems. The suggested model uses a “long short‐term memory” decoder for word prediction and sentence construction, and a “convolutional neural network” as an encoder that is skilled at object recognition and spatial information retention. The long short‐term memory network functions as a sequence processor, generating a fixed‐length output vector for final predictions, while the VGG‐19 model is utilized as an image feature extractor. For both training and testing, the study uses a variety of photos from open‐access datasets, such as Flickr8k, Flickr30k, and MS COCO. The Python platform is used for implementation, with Keras and TensorFlow as backends. The experimental findings, which were assessed using the “bilingual evaluation understudy” metric, demonstrate the effectiveness of the suggested methodology in automatically captioning images. By addressing spatial relationships in images and producing logical, contextually relevant captions, the paper advances image captioning technology. Insightful ideas for future study directions are generated by the discussion of the difficulties faced during the experimentation phase. By establishing a strong neural network architecture for automatic picture captioning, this study creates opportunities for future advancement and improvement in the area.
This study introduces a novel encoder–decoder framework based on deep neural networks and provides a thorough investigation into the field of automatic picture captioning systems. The suggested model uses a “long short‐term memory” decoder for word prediction and sentence construction, and a “convolutional neural network” as an encoder that is skilled at object recognition and spatial information retention. The long short‐term memory network functions as a sequence processor, generating a fixed‐length output vector for final predictions, while the VGG‐19 model is utilized as an image feature extractor. For both training and testing, the study uses a variety of photos from open‐access datasets, such as Flickr8k, Flickr30k, and MS COCO. The Python platform is used for implementation, with Keras and TensorFlow as backends. The experimental findings, which were assessed using the “bilingual evaluation understudy” metric, demonstrate the effectiveness of the suggested methodology in automatically captioning images. By addressing spatial relationships in images and producing logical, contextually relevant captions, the paper advances image captioning technology. Insightful ideas for future study directions are generated by the discussion of the difficulties faced during the experimentation phase. By establishing a strong neural network architecture for automatic picture captioning, this study creates opportunities for future advancement and improvement in the area. This article presents a comprehensive exploration into the realm of automatic image captioning systems, introducing an innovative deep neural network‐based encoder–decoder framework. The VGG‐19 model is employed as an image feature extractor, and the long short‐term memory network serves as a sequence processor, producing a fixed‐length output vector for final predictions. Diverse images sourced from open‐access datasets, including Flickr8k, Flickr30k, and MS COCO, are utilized for both training and testing.
Author Khatun, Fatema
Sami, Sadia Islam
Rahman, Md Mijanur
Uzzaman, Ashik
Bhuiyan, Md Al‐Amin
Author_xml – sequence: 1
  givenname: Md Mijanur
  orcidid: 0000-0001-5957-6483
  surname: Rahman
  fullname: Rahman, Md Mijanur
  email: mijan@jkkniu.edu.bd
  organization: Jatiya Kabi Kazi Nazrul Islam University, Trishal
– sequence: 2
  givenname: Ashik
  surname: Uzzaman
  fullname: Uzzaman, Ashik
  organization: Jatiya Kabi Kazi Nazrul Islam University, Trishal
– sequence: 3
  givenname: Sadia Islam
  surname: Sami
  fullname: Sami, Sadia Islam
  organization: Jatiya Kabi Kazi Nazrul Islam University, Trishal
– sequence: 4
  givenname: Fatema
  surname: Khatun
  fullname: Khatun, Fatema
  organization: Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj
– sequence: 5
  givenname: Md Al‐Amin
  surname: Bhuiyan
  fullname: Bhuiyan, Md Al‐Amin
  organization: King Faisal University, Hofuf
BookMark eNp9kcFq3DAQhkVJoUnaS59A58ImI1u2pGMITbIQSAjtWcxK461S2zKSt2EvIY9Q6BvmSWLvNj2U0tOMxP9__MN_xA762BNjHwWcCJDmNAypOBFlodUbdihUJRamrtXBn70y79hRzvcAlQFdHbLHM-5iNyT6Rn0OP2h69XlMGzeG2PPYcE808J42CdtpjA8xfX9--rnCTJ5T76Kn9Pz0y9Nu403CjmYNb2LiuBljh2NwPHS4ntg4zNjQr3ne5pG6_J69bbDN9OH3PGZfLz5_Ob9aXN9cLs_PrheuLI1auEorhwU4TQAKlFZSU12Dkb6Com40KNNIchINeDLe1ARlLQunQKDysjxmyz3XR7y3Q5rypK2NGOzuI6a1xTQFbckCCKq1WqFSIEsptUPhyK9EURnvlJ9YsGe5FHNO1FgXRpwPGxOG1gqwcxd27sLuupgsn_6yvEb4p1jsxQ-hpe1_lHZ5e1fsPS9raKBj
CitedBy_id crossref_primary_10_1007_s42979_025_04111_0
Cites_doi 10.1177/00207314211017469
10.1007/s00034-019-01306-8
10.1002/widm.1356
10.1117/12.2515159
10.1007/978-3-031-45382-3_4
10.1186/s40537-022-00571-w
10.1145/2964284.2964299
10.1017/S1351324918000098
10.3390/s22186816
10.1016/j.neucom.2020.03.087
10.1016/j.patrec.2021.02.009
10.1109/TPAMI.2012.118
10.1109/ACCESS.2019.2917771
10.1016/j.patcog.2021.108285
10.1016/j.eswa.2023.119774
10.1016/B978-0-12-815739-8.00010-9
10.1109/ACCESS.2020.3021508
10.1007/s10462-023-10488-2
10.1109/ICCV.2019.00898
10.1007/978-3-319-10602-1_48
10.1049/ipr2.12367
10.1109/TMM.2019.2951226
10.3390/rs14225675
10.1016/j.neucom.2021.05.103
10.1016/j.cviu.2009.03.008
10.1109/TPAMI.2023.3275156/mm1
10.1109/ACCESS.2020.2965575
10.3390/technologies11020040
10.21203/rs.3.rs-2046359/v1
10.1162/tacl_a_00166
10.1109/TIP.2023.3330086
10.1016/j.neucom.2022.11.074
10.1007/978-3-030-01264-9_42
10.1016/j.patrec.2019.03.021
10.1613/jair.4900
10.1155/2020/3062706
10.1109/ACCESS.2021.3058248
10.1016/j.inffus.2021.02.014
10.1145/3115932
10.1109/RMKMATE59243.2023.10368610
10.3390/sym10110648
10.1109/CVPR42600.2020.01098
10.1016/j.neucom.2023.126287
10.1109/CVPR.2015.7298935
10.1109/TBME.2021.3117407
10.1016/B978-0-12-812133-7.00010-7
10.1109/CVPR.2015.7298754
10.1155/2018/7068349
10.1109/CVPR.2016.503
10.1007/978-3-642-15561-1_2
10.1109/TPAMI.2022.3148210
10.1109/CVPR.2009.5206848
10.1145/3617592
10.1016/j.neucom.2021.03.091
10.1016/j.neucom.2018.05.080
10.1186/s40537-020-00386-7
10.1109/ACCESS.2023.3324052
10.1109/ACCESS.2020.3042484
10.1007/s40860-021-00166-x
10.1016/j.jvcir.2019.102705
10.3115/1073083.1073135
10.1016/j.robot.2020.103625
10.1016/j.knosys.2020.105596
10.1016/j.neucom.2023.02.006
10.1007/s10462-020-09838-1
10.1145/3409388
10.1007/s11220-022-00400-7
10.1155/2024/2918089
10.1109/ICCV.2019.00473
10.1038/s41598-023-27815-w
10.1109/ICECA.2018.8474802
10.1109/CVPR.2015.7298932
10.3390/su13042393
10.32604/cmes.2024.050853
10.1109/CVPR.2015.7298710
10.1109/CVPR42600.2020.01059
10.7717/peerj-cs.1400
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.13287
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 4798
ExternalDocumentID oai_doaj_org_article_001e687ba77043448ca1cedb1259dc7d
10_1049_ipr2_13287
IPR213287
Genre researchArticle
GroupedDBID .DC
0R~
1OC
24P
29I
5GY
6IK
8VB
AAHHS
AAHJG
AAJGR
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
ESX
GROUPED_DOAJ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
LAI
MCNEO
MS~
O9-
OCL
OK1
P2P
QWB
RIE
RNS
ROL
RUI
ZL0
4.4
8FE
8FG
AAMMB
AAYXX
ABJCF
AEFGJ
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
HCIFZ
IDLOA
K1G
L6V
M43
M7S
P62
PHGZM
PHGZT
PQGLB
PTHSS
S0W
WIN
ID FETCH-LOGICAL-c3397-c587ca20c8e007078748e66094d5026f8079f4ec4a90de9d96e03642c701a7d43
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001362538400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9659
IngestDate Fri Oct 03 12:44:41 EDT 2025
Wed Oct 29 21:20:17 EDT 2025
Tue Nov 18 21:59:21 EST 2025
Wed Jan 22 17:14:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3397-c587ca20c8e007078748e66094d5026f8079f4ec4a90de9d96e03642c701a7d43
ORCID 0000-0001-5957-6483
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13287
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_001e687ba77043448ca1cedb1259dc7d
crossref_citationtrail_10_1049_ipr2_13287
crossref_primary_10_1049_ipr2_13287
wiley_primary_10_1049_ipr2_13287_IPR213287
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 69
2023; 32
2023; 223
2023; 9
2023; 546
2024; 140
2022; 23
2020; 16
2024; 141
2020; 401
2022; 22
2020; 10
2021; 72
2019; 123
2020; 8
2022; 122
2020; 7
2014; 2
2020; 53
2019; 22
2010; 114
2024; 2024
2011; 24
2020; 133
2021; 9
2019; 7
2023; 13
2015; 6
2022; 470
2023; 11
2023; 56
2021; 146
2010
2019; 10962
2023; 520
2009
2022; 45
2020; 39
2002
2012; 35
2021; 51
2018; 24
2016; 55
2021; 13
2018; 2018
2020; 2020
2023
2022
2021
2020
2019; 43
2018; 311
2022; 9
2020; 194
2019
2018
2022; 14
2020; 69
2017
2016
2015
2014
2021; 452
2018; 10
2022; 16
2018; 14
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_72_1
e_1_2_11_91_1
Sugano Y. (e_1_2_11_24_1) 2016
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
Kiros R. (e_1_2_11_26_1) 2014
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Rahman M.M. (e_1_2_11_11_1) 2015; 6
Ordonez V. (e_1_2_11_43_1) 2011; 24
e_1_2_11_83_1
Hardeniya N. (e_1_2_11_75_1) 2016
e_1_2_11_60_1
e_1_2_11_81_1
Rahman M.M. (e_1_2_11_74_1) 2015; 6
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_89_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_87_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_71_1
e_1_2_11_92_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_79_1
e_1_2_11_14_1
Kalash M. (e_1_2_11_56_1) 2019; 43
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_3_1
e_1_2_11_49_1
Huang Z. (e_1_2_11_58_1) 2020
e_1_2_11_82_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_18_1
Liu X. (e_1_2_11_29_1) 2020; 16
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
Yin L. (e_1_2_11_34_1) 2024; 141
Mao J. (e_1_2_11_20_1) 2014
References_xml – volume: 123
  start-page: 89
  year: 2019
  end-page: 95
  article-title: Image caption generation with high‐level image features
  publication-title: Pattern Recognit. Lett.
– year: 2023
  article-title: Deep learning based object detection for resource constrained devices‐systematic review, future trends and challenges ahead
  publication-title: Neurocomputing
– volume: 39
  start-page: 776
  year: 2020
  end-page: 788
  article-title: An integrated hybrid CNN–RNN model for visual description and generation of captions
  publication-title: Circuits, Systems, and Signal Process.
– volume: 223
  year: 2023
  article-title: Transformer‐based local‐global guidance for image captioning
  publication-title: Expert Syst. Appl.
– volume: 69
  year: 2020
  article-title: Research on image feature extraction and retrieval algorithms based on convolutional neural network
  publication-title: J. Visual Commun. Image Represent.
– volume: 311
  start-page: 291
  year: 2018
  end-page: 304
  article-title: A survey on automatic image caption generation
  publication-title: Neurocomputing
– volume: 10962
  year: 2019
– volume: 53
  start-page: 5929
  year: 2020
  end-page: 5955
  article-title: A review on the long short‐term memory model
  publication-title: Artif. Intell. Rev.
– volume: 35
  start-page: 797
  issue: 4
  year: 2012
  end-page: 812
  article-title: Automatic caption generation for news images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 470
  start-page: 443
  year: 2022
  end-page: 456
  article-title: An introduction to deep learning in natural language processing: models, techniques, and tools
  publication-title: Neurocomputing
– volume: 11
  start-page: 115477
  year: 2023
  end-page: 115492
  article-title: Vision‐text cross‐modal fusion for accurate video captioning
  publication-title: IEEE Access
– start-page: 40
  year: 2023
  end-page: 52
  article-title: Descriptive and coherent paragraph generation for image paragraph captioning using vision transformer and post‐processing
– volume: 13
  start-page: 2393
  issue: 4
  year: 2021
  article-title: Prospective methodologies in hybrid renewable energy systems for energy prediction using artificial neural networks
  publication-title: Sustainability
– volume: 8
  start-page: 218386
  year: 2020
  end-page: 218400
  article-title: Automatic image and video caption generation with deep learning: a concise review and algorithmic overlap
  publication-title: IEEE Access
– volume: 401
  start-page: 249
  year: 2020
  end-page: 256
  article-title: Evolutionary recurrent neural network for image captioning
  publication-title: Neurocomputing
– volume: 122
  year: 2022
  article-title: Protect, show, attend and tell: empowering image captioning models with ownership protection
  publication-title: Pattern Recognit.
– year: 2021
  article-title: Image captioning using deep neural network based model
– start-page: 988
  year: 2016
  end-page: 997
  article-title: Image captioning with deep bidirectional LSTMs
– volume: 24
  start-page: 1143
  year: 2011
  end-page: 1151
  article-title: Im2text: describing images using 1 million captioned photographs
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 72
  start-page: 126
  year: 2021
  end-page: 146
  article-title: Image synthesis with adversarial networks: a comprehensive survey and case studies
  publication-title: Inf. Fusion
– volume: 7
  start-page: 66358
  year: 2019
  end-page: 66368
  article-title: Multilayer dense attention model for image caption
  publication-title: IEEE Access
– year: 2014
  article-title: Unifying visual‐semantic embeddings with multimodal neural language models
  publication-title: arXiv:1411.2539
– start-page: 8888
  year: 2019
  end-page: 8897
  article-title: Reflective decoding network for image captioning
– volume: 14
  start-page: 5675
  issue: 22
  year: 2022
  article-title: Consecutive pre‐training: a knowledge transfer learning strategy with relevant unlabeled data for remote sensing domain
  publication-title: Remote. Sens.
– start-page: 2048
  year: 2015
  end-page: 2057
  article-title: Show, attend and tell: Neural image caption generation with visual attention
– year: 2016
  article-title: Seeing with humans: gaze‐assisted neural image captioning
  publication-title: arXiv:1608.05203
– volume: 140
  start-page: 2315
  issue: 3
  year: 2024
  end-page: 2347
  article-title: AFBNet: a lightweight adaptive feature fusion module for super‐resolution algorithms
  publication-title: Comput. Model. Eng. Sci.
– start-page: 281
  year: 2017
  end-page: 314
– start-page: 3156
  year: 2015
  end-page: 3164
  article-title: Show and tell: a neural image caption generator
– volume: 32
  start-page: 6303
  year: 2023
  end-page: 6317
  article-title: GQE‐Net: a graph‐based quality enhancement network for point cloud color attribute
  publication-title: IEEE Trans. Image Process.
– year: 2022
– start-page: 4651
  year: 2016
  end-page: 4659
  article-title: Image captioning with semantic attention
– volume: 10
  start-page: 648
  issue: 11
  year: 2018
  article-title: A comparison of regularization techniques in deep neural networks
  publication-title: Symmetry
– year: 2014
  article-title: Deep captioning with multimodal recurrent neural networks (M‐RNN)
  publication-title: arXiv:1412.6632
– volume: 6
  start-page: 218
  issue: 3
  year: 2015
  end-page: 222
  article-title: An implementation for combining neural networks and genetic algorithms
  publication-title: Int. J. Comput. Sci. Technol.
– volume: 16
  start-page: 311
  issue: 2
  year: 2022
  end-page: 332
  article-title: A thorough review of models, evaluation metrics, and datasets on image captioning
  publication-title: IET Image Proc.
– volume: 9
  start-page: 1
  issue: 1
  year: 2022
  end-page: 16
  article-title: Image captioning model using attention and object features to mimic human image understanding
  publication-title: J. Big Data
– start-page: 684
  year: 2018
  end-page: 699
  article-title: Exploring visual relationship for image captioning
– volume: 8
  start-page: 170461
  year: 2020
  end-page: 170495
  article-title: Exploring deep learning‐based architecture, strategies, applications and current trends in generic object detection: a comprehensive review
  publication-title: IEEE Access
– start-page: 740
  year: 2014
  end-page: 755
  article-title: Microsoft COCO: common objects in context
– volume: 22
  start-page: 2149
  issue: 8
  year: 2019
  end-page: 2162
  article-title: Show, tell, and polish: Ruminant decoding for image captioning
  publication-title: IEEE Trans. Multimedia
– start-page: 1473
  year: 2015
  end-page: 1482
  article-title: From captions to visual concepts and back
– start-page: 10578
  year: 2020
  end-page: 10587
  article-title: Meshed‐memory transformer for image captioning
– volume: 194
  year: 2020
  article-title: A review of deep learning with special emphasis on architectures, applications and recent trends
  publication-title: Knowl.‐Based Syst.
– volume: 2018
  year: 2018
  article-title: Deep learning for computer vision: a brief review
  publication-title: Comput. Intell. Neurosci.
– volume: 2
  start-page: 67
  year: 2014
  end-page: 78
  article-title: From image descriptions to visual denotations: new similarity metrics for semantic inference over event descriptions
  publication-title: Trans. Assoc. Comput. Linguist.
– start-page: 4634
  year: 2019
  end-page: 4643
  article-title: Attention on attention for image captioning
– volume: 14
  start-page: 1
  issue: 2s
  year: 2018
  end-page: 20
  article-title: Image captioning with deep bidirectional LSTMs and multi‐task learning
  publication-title: ACM Trans. Multimedia Comput., Commun., Appl.
– volume: 56
  start-page: 13619
  year: 2023
  end-page: 13661
  article-title: A comprehensive survey on image captioning: from handcrafted to deep learning‐based techniques, a taxonomy and open research issues
  publication-title: Artif. Intell. Rev.
– volume: 55
  start-page: 409
  year: 2016
  end-page: 442
  article-title: Automatic description generation from images: a survey of models, datasets, and evaluation measures
  publication-title: J. Artif. Intell. Res.
– volume: 146
  start-page: 70
  year: 2021
  end-page: 76
  article-title: Leveraging auxiliary image descriptions for dense video captioning
  publication-title: Pattern Recognit. Letters
– volume: 69
  start-page: 1173
  issue: 3
  year: 2021
  end-page: 1185
  article-title: Domain adaptation for medical image analysis: a survey
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 6
  start-page: 107
  issue: 2
  year: 2015
  end-page: 117
  article-title: Comparison study and result analysis of improved back‐propagation algorithms in Bangla speech recognition
  publication-title: Int. J. Appl. Res. Inf. Technol. Comput.
– start-page: 173
  year: 2020
  end-page: 191
– volume: 2020
  year: 2020
  article-title: An overview of image caption generation methods
  publication-title: Comput. Intell. Neurosci.
– volume: 2024
  issue: 1
  year: 2024
  article-title: Cobotics: the evolving roles and prospects of next‐generation collaborative robots in Industry 5.0
  publication-title: J. Rob.
– volume: 9
  start-page: 43799
  year: 2021
  end-page: 43823
  article-title: Video question‐answering techniques, benchmark datasets and evaluation metrics leveraging video captioning: a comprehensive survey
  publication-title: IEEE Access
– start-page: 311
  year: 2002
  end-page: 318
  article-title: Bleu: a method for automatic evaluation of machine translation
– start-page: 3128
  year: 2015
  end-page: 3137
  article-title: Deep visual‐semantic alignments for generating image descriptions
– volume: 16
  start-page: 1
  issue: 4
  year: 2020
  end-page: 22
  article-title: Adaptive attention‐based high‐level semantic introduction for image caption
  publication-title: ACM Trans. Multimedia Comput., Commun., Appl.
– volume: 24
  start-page: 467
  issue: 3
  year: 2018
  end-page: 489
  article-title: Where to put the image in an image caption generator
  publication-title: Nat. Lang. Eng.
– volume: 133
  year: 2020
  article-title: Visual place recognition by spatial matching of high‐level CNN features
  publication-title: Rob. Auton. Syst.
– volume: 51
  start-page: 446
  issue: 4
  year: 2021
  end-page: 461
  article-title: A comprehensive study of artificial intelligence and machine learning approaches in confronting the coronavirus (COVID‐19) pandemic
  publication-title: Int. J. Health Serv.
– volume: 546
  year: 2023
  article-title: Deep image captioning: a review of methods, trends and future challenges
  publication-title: Neurocomputing
– start-page: 656
  year: 2018
  end-page: 660
  article-title: Transfer learning for image classification
– volume: 10
  issue: 3
  year: 2020
  article-title: Bias in data‐driven artificial intelligence systems—an introductory survey
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery
– volume: 7
  start-page: 1
  year: 2020
  end-page: 17
  article-title: Arabic text summarization using deep learning approach
  publication-title: J. Big Data
– year: 2016
– volume: 45
  start-page: 539
  issue: 1
  year: 2022
  end-page: 559
  article-title: From show to tell: a survey on deep learning‐based image captioning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2023
  article-title: Multimodal learning with transformers: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 9
  start-page: 183
  year: 2022
  end-page: 200
  article-title: A comprehensive study and performance analysis of deep neural network‐based approaches in wind time‐series forecasting
  publication-title: J. Reliab. Intell. Environ.
– start-page: 15
  year: 2010
  end-page: 29
  article-title: Every picture tells a story: Generating sentences from images
– volume: 520
  start-page: 376
  year: 2023
  end-page: 385
  article-title: MIGT: Multi‐modal image inpainting guided with text
  publication-title: Neurocomputing
– start-page: 1072
  year: 2015
  end-page: 1080
  article-title: Salicon: saliency in context
– volume: 23
  start-page: 31
  issue: 1
  year: 2022
  article-title: Image captioning using hybrid LSTM‐RNN with deep features
  publication-title: Sens. Imaging
– volume: 43
  start-page: 204
  issue: 1
  year: 2019
  end-page: 219
  article-title: Relative saliency and ranking: models, metrics, data and benchmarks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 11
  start-page: 40
  issue: 2
  year: 2023
  article-title: A review of deep transfer learning and recent advancements
  publication-title: Technologies
– start-page: 139
  year: 2010
  end-page: 147
  article-title: Collecting image annotations using Amazon's mechanical Turk
– volume: 9
  year: 2023
  article-title: The multi‐modal fusion in visual question answering: a review of attention mechanisms
  publication-title: PeerJ Comput. Sci.
– volume: 56
  start-page: 1
  issue: 3
  year: 2023
  end-page: 39
  article-title: Deep learning approaches on image captioning: a review
  publication-title: ACM Comput. Surv.
– volume: 114
  start-page: 419
  issue: 4
  year: 2010
  end-page: 428
  article-title: The segmented and annotated IAPR TC‐12 benchmark
  publication-title: Comput. Vision Image Understanding
– start-page: 6456
  year: 2018
  end-page: 6466
  article-title: Turbo learning for captionbot and drawingbot
– volume: 452
  start-page: 48
  year: 2021
  end-page: 62
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
– start-page: 1
  year: 2023
  end-page: 5
  article-title: Seeing with sound: automatic image captioning with auditory output for the visually impaired
– volume: 141
  start-page: 1
  issue: 1
  year: 2024
  end-page: 20
  article-title: Convolution‐transformer for image feature extraction
  publication-title: Comput. Model. Eng. Sci.
– volume: 56
  start-page: 13619
  issue: 11
  year: 2023
  end-page: 13661
  article-title: A comprehensive survey on image captioning: from handcrafted to deep learning‐based techniques, a taxonomy and open research issues
  publication-title: Artif. Intell. Rev.
– volume: 22
  start-page: 6816
  issue: 18
  year: 2022
  article-title: A review of multi‐modal learning from the text‐guided visual processing viewpoint
  publication-title: Sensors
– year: 2020
  article-title: Pixel‐BERT: aligning image pixels with text by deep multi‐modal transformers
  publication-title: arXiv:2004.00849
– start-page: 248
  year: 2009
  end-page: 255
  article-title: ImageNet: a large‐scale hierarchical image database
– volume: 13
  start-page: 791
  issue: 1
  year: 2023
  article-title: A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X‐ray images
  publication-title: Sci. Rep.
– start-page: 10971
  year: 2020
  end-page: 10980
  article-title: X‐linear attention networks for image captioning
– volume: 8
  start-page: 11279
  year: 2020
  end-page: 11288
  article-title: Text summarization method based on double attention pointer network
  publication-title: IEEE Access
– ident: e_1_2_11_41_1
– ident: e_1_2_11_16_1
  doi: 10.1177/00207314211017469
– ident: e_1_2_11_55_1
  doi: 10.1007/s00034-019-01306-8
– ident: e_1_2_11_81_1
  doi: 10.1002/widm.1356
– ident: e_1_2_11_28_1
  doi: 10.1117/12.2515159
– ident: e_1_2_11_49_1
  doi: 10.1007/978-3-031-45382-3_4
– ident: e_1_2_11_6_1
  doi: 10.1186/s40537-022-00571-w
– ident: e_1_2_11_23_1
  doi: 10.1145/2964284.2964299
– ident: e_1_2_11_9_1
  doi: 10.1017/S1351324918000098
– ident: e_1_2_11_47_1
  doi: 10.3390/s22186816
– ident: e_1_2_11_53_1
  doi: 10.1016/j.neucom.2020.03.087
– ident: e_1_2_11_66_1
  doi: 10.1016/j.patrec.2021.02.009
– ident: e_1_2_11_73_1
  doi: 10.1109/TPAMI.2012.118
– ident: e_1_2_11_7_1
  doi: 10.1109/ACCESS.2019.2917771
– ident: e_1_2_11_62_1
  doi: 10.1016/j.patcog.2021.108285
– year: 2014
  ident: e_1_2_11_20_1
  article-title: Deep captioning with multimodal recurrent neural networks (M‐RNN)
  publication-title: arXiv:1412.6632
– ident: e_1_2_11_78_1
  doi: 10.1016/j.eswa.2023.119774
– ident: e_1_2_11_54_1
  doi: 10.1016/B978-0-12-815739-8.00010-9
– ident: e_1_2_11_57_1
  doi: 10.1109/ACCESS.2020.3021508
– year: 2014
  ident: e_1_2_11_26_1
  article-title: Unifying visual‐semantic embeddings with multimodal neural language models
  publication-title: arXiv:1411.2539
– ident: e_1_2_11_52_1
  doi: 10.1007/s10462-023-10488-2
– ident: e_1_2_11_36_1
  doi: 10.1109/ICCV.2019.00898
– year: 2016
  ident: e_1_2_11_24_1
  article-title: Seeing with humans: gaze‐assisted neural image captioning
  publication-title: arXiv:1608.05203
– ident: e_1_2_11_44_1
  doi: 10.1007/978-3-319-10602-1_48
– ident: e_1_2_11_50_1
  doi: 10.1049/ipr2.12367
– ident: e_1_2_11_60_1
  doi: 10.1109/TMM.2019.2951226
– ident: e_1_2_11_90_1
  doi: 10.3390/rs14225675
– ident: e_1_2_11_70_1
  doi: 10.1016/j.neucom.2021.05.103
– ident: e_1_2_11_45_1
  doi: 10.1016/j.cviu.2009.03.008
– volume: 141
  start-page: 1
  issue: 1
  year: 2024
  ident: e_1_2_11_34_1
  article-title: Convolution‐transformer for image feature extraction
  publication-title: Comput. Model. Eng. Sci.
– ident: e_1_2_11_59_1
  doi: 10.1109/TPAMI.2023.3275156/mm1
– ident: e_1_2_11_68_1
  doi: 10.1109/ACCESS.2020.2965575
– ident: e_1_2_11_91_1
  doi: 10.3390/technologies11020040
– ident: e_1_2_11_93_1
  doi: 10.21203/rs.3.rs-2046359/v1
– volume: 6
  start-page: 218
  issue: 3
  year: 2015
  ident: e_1_2_11_11_1
  article-title: An implementation for combining neural networks and genetic algorithms
  publication-title: Int. J. Comput. Sci. Technol.
– ident: e_1_2_11_42_1
  doi: 10.1162/tacl_a_00166
– ident: e_1_2_11_32_1
  doi: 10.1109/TIP.2023.3330086
– ident: e_1_2_11_79_1
  doi: 10.1016/j.neucom.2022.11.074
– ident: e_1_2_11_35_1
  doi: 10.1007/978-3-030-01264-9_42
– ident: e_1_2_11_48_1
  doi: 10.1016/j.patrec.2019.03.021
– volume: 43
  start-page: 204
  issue: 1
  year: 2019
  ident: e_1_2_11_56_1
  article-title: Relative saliency and ranking: models, metrics, data and benchmarks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: e_1_2_11_10_1
  doi: 10.1613/jair.4900
– ident: e_1_2_11_12_1
  doi: 10.1155/2020/3062706
– ident: e_1_2_11_87_1
  doi: 10.1109/ACCESS.2021.3058248
– ident: e_1_2_11_86_1
  doi: 10.1016/j.inffus.2021.02.014
– ident: e_1_2_11_61_1
  doi: 10.1145/3115932
– ident: e_1_2_11_71_1
  doi: 10.1109/RMKMATE59243.2023.10368610
– ident: e_1_2_11_82_1
  doi: 10.3390/sym10110648
– ident: e_1_2_11_38_1
  doi: 10.1109/CVPR42600.2020.01098
– ident: e_1_2_11_17_1
  doi: 10.1016/j.neucom.2023.126287
– ident: e_1_2_11_18_1
  doi: 10.1109/CVPR.2015.7298935
– ident: e_1_2_11_85_1
  doi: 10.1109/TBME.2021.3117407
– ident: e_1_2_11_77_1
  doi: 10.1016/B978-0-12-812133-7.00010-7
– ident: e_1_2_11_25_1
  doi: 10.1109/CVPR.2015.7298754
– ident: e_1_2_11_30_1
– ident: e_1_2_11_2_1
  doi: 10.1155/2018/7068349
– ident: e_1_2_11_22_1
  doi: 10.1109/CVPR.2016.503
– ident: e_1_2_11_40_1
  doi: 10.1007/978-3-642-15561-1_2
– ident: e_1_2_11_19_1
– ident: e_1_2_11_31_1
  doi: 10.1109/TPAMI.2022.3148210
– ident: e_1_2_11_21_1
  doi: 10.1109/CVPR.2009.5206848
– ident: e_1_2_11_5_1
  doi: 10.1145/3617592
– ident: e_1_2_11_51_1
  doi: 10.1016/j.neucom.2021.03.091
– ident: e_1_2_11_64_1
  doi: 10.1016/j.neucom.2018.05.080
– ident: e_1_2_11_67_1
  doi: 10.1186/s40537-020-00386-7
– ident: e_1_2_11_88_1
  doi: 10.1109/ACCESS.2023.3324052
– ident: e_1_2_11_92_1
– ident: e_1_2_11_8_1
  doi: 10.1109/ACCESS.2020.3042484
– ident: e_1_2_11_15_1
  doi: 10.1007/s40860-021-00166-x
– ident: e_1_2_11_72_1
  doi: 10.1016/j.jvcir.2019.102705
– ident: e_1_2_11_76_1
  doi: 10.3115/1073083.1073135
– volume-title: Natural Language Processing: Python and NLTK
  year: 2016
  ident: e_1_2_11_75_1
– year: 2020
  ident: e_1_2_11_58_1
  article-title: Pixel‐BERT: aligning image pixels with text by deep multi‐modal transformers
  publication-title: arXiv:2004.00849
– ident: e_1_2_11_65_1
  doi: 10.1016/j.robot.2020.103625
– ident: e_1_2_11_80_1
  doi: 10.1016/j.knosys.2020.105596
– ident: e_1_2_11_83_1
  doi: 10.1016/j.neucom.2023.02.006
– ident: e_1_2_11_14_1
  doi: 10.1007/s10462-020-09838-1
– volume: 16
  start-page: 1
  issue: 4
  year: 2020
  ident: e_1_2_11_29_1
  article-title: Adaptive attention‐based high‐level semantic introduction for image caption
  publication-title: ACM Trans. Multimedia Comput., Commun., Appl.
  doi: 10.1145/3409388
– ident: e_1_2_11_63_1
  doi: 10.1007/s11220-022-00400-7
– ident: e_1_2_11_84_1
  doi: 10.1155/2024/2918089
– ident: e_1_2_11_37_1
  doi: 10.1109/ICCV.2019.00473
– volume: 24
  start-page: 1143
  year: 2011
  ident: e_1_2_11_43_1
  article-title: Im2text: describing images using 1 million captioned photographs
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_11_4_1
  doi: 10.1038/s41598-023-27815-w
– volume: 6
  start-page: 107
  issue: 2
  year: 2015
  ident: e_1_2_11_74_1
  article-title: Comparison study and result analysis of improved back‐propagation algorithms in Bangla speech recognition
  publication-title: Int. J. Appl. Res. Inf. Technol. Comput.
– ident: e_1_2_11_69_1
  doi: 10.1109/ICECA.2018.8474802
– ident: e_1_2_11_27_1
  doi: 10.1109/CVPR.2015.7298932
– ident: e_1_2_11_3_1
  doi: 10.1007/s10462-023-10488-2
– ident: e_1_2_11_13_1
  doi: 10.3390/su13042393
– ident: e_1_2_11_33_1
  doi: 10.32604/cmes.2024.050853
– ident: e_1_2_11_46_1
  doi: 10.1109/CVPR.2015.7298710
– ident: e_1_2_11_39_1
  doi: 10.1109/CVPR42600.2020.01059
– ident: e_1_2_11_89_1
  doi: 10.7717/peerj-cs.1400
SSID ssj0059085
Score 2.3465233
Snippet This study introduces a novel encoder–decoder framework based on deep neural networks and provides a thorough investigation into the field of automatic picture...
Abstract This study introduces a novel encoder–decoder framework based on deep neural networks and provides a thorough investigation into the field of...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 4778
SubjectTerms CNN Encoder
Deep Learning
Image Captioning
Image Feature Extractor
LSTM Decoder
Pre‐trained VGG‐19 Model
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHrz4FtcXAb0oVLttmsdRRVEQEVHwVtLMFBd0d9lVj-JPEPyH_hInSdcHiF68tSU0ZTKdma_5-g1jmyKtrZGVTnILMhGgqsRWlUugqIxuIxSqCpL5p-rsTF9fm_Mvrb48JyzKA0fD7VIYRalVZZVKRU5gwtm2Q6goMRtwCnz0TZUZgakYg30j7yL8CumbyMvCjIRJhdnt9AfZDmEwT6L7koqCYv_3CjWkmKMZNtXUhnwvPtMsG8PuHJtu6kTevIXDefa0xz0TfIA3kX1OZ586sLxXc0Dsc69USXfrRp732_OLT1jAvXAl4ODt-RUwHPF6xM_iVMBy-3DfCzKuvHNHsYY722--2fKo-jxcYFdHh5cHx0nTRyFxOZUbiSu0cjZLncao7qOERikJ2EFBEKzWZL9aoBPWpIAGjES_O5k5lbatApEvsvFur4tLjEtB-Ml6RUOCWdpkFmuVAeQSnFNtKFpsa2TS0jUi477XxW0ZNruFKb35y2D-Ftv4GNuP0ho_jtr3K_MxwsthhwvkJGXjJOVfTtJi22Fdf5mnPDm_yMLR8n_MuMImMyp_IvFllY2TE-Aam3CP953hYD046zsWvvDN
  priority: 102
  providerName: Directory of Open Access Journals
Title A comprehensive construction of deep neural network‐based encoder–decoder framework for automatic image captioning systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13287
https://doaj.org/article/001e687ba77043448ca1cedb1259dc7d
Volume 18
WOSCitedRecordID wos001362538400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9q64Mv1vpBz2oJ6IvC6n5k8wG-VGlpoRyHKPZtSTJZPah3x171UfonFPwP-5c4SXavFKRQ-rJkl9nNkskkv0kmvwF4zfPWaGFVVhkUGUdpM2Oty7C2WhUea2kjZf6xHI_VyYmerMGH4SxM4odYLbgFy4jjdTBwY1MWEgK1pMTpoivfkS-l5D3YKIpKhj5d8skwDodk3nU8DhkSyYtaD-SkXL-_evfadBRZ-6-j1DjNHGze7QcfwcMeXrK91B-2YM3PHsNmDzVZb8jLJ_Bnj4Vg8s7_SAHsdHdFJcvmLUPvFyyQXdLXZilU_PL8Isx5yAL3Jfru8vwv-lhi7RDixQgDM_PrbB6ZYNn0Jw1XzJlFv-zLEnH08il8Pdj_8ukw61MxZK4ixJK5WklnytwpnwiCJFdeCPINsSYvrlW51C33jhudo9eohQ8bnKWTeWEk8uoZrM_mM78NTHBywUwgRSRPTenS-FaWiJVA52SB9QjeDBppXM9THtJlnDZxv5zrJjRsExt2BK9WsovEzvFfqY9BsSuJwKgdH8y7701voCG2zwslrZEy5xU5rc4UzqMlAKjRSRzB26jsG-ppjiafy1h6fhvhHXhQElJKMTIvYJ2U7V_Cfff7bLrsdmOf3o1LBXT9djT-B3I0_y8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-0CvrS-kmvWg3oi8Lavd1sPh5rsbR4HodU6NuSzczqgb079qqP0j9B8D_sX2Im2btSEEF8yy6zH2Qymfklk98AvJR566xqTFY6VJlE3WSuaXyGVWPNkLDSTaTMH-nx2Jye2kmfm8NnYRI_xHrBjS0jztds4LwgnQCnZJLM6aIr3gQwZfRNuCWDm-ECBoWcrCZiruZdxfOQXEleVXbFTirt3tWz1_xRpO2_HqZGP3O49Z9_eA82-wBT7KcRcR9u0OwBbPXBpuhNefkQfuwLTifv6EtKYQ9XV2SyYt4KJFoIprsMb5ulZPHLi5_s9VAw-yVSd3nxCym2RLtK8hIhChbu2_k8csGK6VmYsIR3i37hVyTq6OUj-HT47uTgKOuLMWS-DDFL5iujvStybyhRBGlpSKmADrEKOK41ubatJC-dzZEsWkW8xVl4nQ-dRlk-ho3ZfEbbIJQMIMwxLWLAasYWjlpdIJYKvddDrAbwaqWS2vdM5Vww42sdd8ylrblj69ixA3ixll0kfo4_Sr1lza4lmFM73ph3n-veRDm7j5TRjdM6l2WArd4NPWETQkCLXuMAXkdt_-U79fHkYxFbO_8i_BzuHJ18GNWj4_H7J3C3CHFTyph5ChtB8bQLt_338-myexYH-G-BUwEc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3daxQxEMAHrSK-WD_xtNWAviis3dvN5uOxrR4Wy3GIQt-WbGZWD_Ru2as-Sv8Ewf-wf4mZZO9KQQTxLbvMfpDJJDPJ5BeA5zJvnVWNyUqHKpOom8w1jc-waqwZE1a6icj8Yz2dmpMTOxtyc3gvTOJDbCbc2DJif80GTh22KeCUDMmcd33xKgRTRl-Fa7IKnSyDneVs3RHzad5V3A_JJ8mryq7ppNLuXTx7aTyK2P7LbmocZybb__mHt-HW4GCK_dQi7sAVWtyF7cHZFIMpr-7Bj33B6eQ9fU4p7OHqAiYrlq1Aok4w7jK8bZGSxc_PfvKoh4Lpl0j9-dkvpFgS7TrJSwQvWLhvp8vIghXzr6HDEt51w8SvSOjo1X34OHnz4fBtNhzGkPky-CyZr4z2rsi9oYQI0tKQUiE6xCrEca3JtW0leelsjmTRKuIlzsLrfOw0yvIBbC2WC3oIQskQhDnGIoZYzdjCUasLxFKh93qM1QherFVS-4FUzgdmfKnjirm0NVdsHSt2BM82sl3ic_xR6oA1u5Fgpna8sew_1YOJcnYfKaMbp3UuyxC2ejf2hE1wAS16jSN4GbX9l-_UR7P3RSw9-hfhp3Bj9npSHx9N3z2Gm0Vwm1LCzA5sBb3TLlz330_nq_5JbN-_ASXtAKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+construction+of+deep+neural+network%E2%80%90based+encoder%E2%80%93decoder+framework+for+automatic+image+captioning+systems&rft.jtitle=IET+image+processing&rft.au=Rahman%2C+Md+Mijanur&rft.au=Uzzaman%2C+Ashik&rft.au=Sami%2C+Sadia+Islam&rft.au=Khatun%2C+Fatema&rft.date=2024-12-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=18&rft.issue=14&rft.spage=4778&rft.epage=4798&rft_id=info:doi/10.1049%2Fipr2.13287&rft.externalDBID=10.1049%252Fipr2.13287&rft.externalDocID=IPR213287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon