Spatial branch-and-bound algorithm for MIQCPs featuring multiparametric disaggregation

Spatial branch-and-bound (B&B) is widely used for the global optimization of non-convex problems. It basically works by iteratively reducing the domain of the variables so that tighter relaxations can be achieved that ultimately converge to the global optimal solution. Recent developments for bi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization methods & software Ročník 32; číslo 4; s. 719 - 737
Hlavní autor: Castro, Pedro M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 04.07.2017
Taylor & Francis Ltd
Témata:
ISSN:1055-6788, 1029-4937
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Spatial branch-and-bound (B&B) is widely used for the global optimization of non-convex problems. It basically works by iteratively reducing the domain of the variables so that tighter relaxations can be achieved that ultimately converge to the global optimal solution. Recent developments for bilinear problems have brought us piecewise relaxation techniques that can prove optimality for a sufficiently large number of partitions and hence avoid spatial B&B altogether. Of these, normalized multiparametric disaggregation (NMDT) exhibits a good performance due to the logarithmic increase in the number of binary variables with the number of partitions. We now propose to integrate NMDT with spatial B&B for solving mixed-integer quadratically constrained minimization problems. Optimality-based bound tightening is also part of the algorithm so as to compute tight lower bounds in every step of the search and reduce the number of nodes to explore. Through the solution of a set of benchmark problems from the literature, it is shown that the new global optimization algorithm can potentially lead to orders of magnitude reduction in optimality gap when compared to commercial solvers BARON and GloMIQO.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1055-6788
1029-4937
DOI:10.1080/10556788.2016.1264397