Platinum and palladium price forecasting through neural networks

To many commodity market participants, forecasts of price series represent a critical task. In this work, nonlinear autoregressive neural network models' potential is explored for forecasting daily prices series of platinum and palladium over about a fifty-year period. For this purpose, one hun...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Simulation and computation Vol. 54; no. 8; pp. 2959 - 2973
Main Authors: Xu, Xiaojie, Zhang, Yun
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis 03.08.2025
Taylor & Francis Ltd
Subjects:
ISSN:0361-0918, 1532-4141
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To many commodity market participants, forecasts of price series represent a critical task. In this work, nonlinear autoregressive neural network models' potential is explored for forecasting daily prices series of platinum and palladium over about a fifty-year period. For this purpose, one hundred and twenty model settings are examined, including different training algorithms, numbers of hidden neurons and delays, and ratios used to segment the data. With the analysis, two models leading to stable and accurate forecast results are constructed for the prices of the two commodities. In particular, the models' performance in terms of the relative root mean square error is 1.86% and 3.61% for platinum and palladium, respectively, for the overall sample. Results in this work could help technical forecasts and policy analysis. The forecast framework might be extended to other different commodities.
AbstractList To many commodity market participants, forecasts of price series represent a critical task. In this work, nonlinear autoregressive neural network models' potential is explored for forecasting daily prices series of platinum and palladium over about a fifty-year period. For this purpose, one hundred and twenty model settings are examined, including different training algorithms, numbers of hidden neurons and delays, and ratios used to segment the data. With the analysis, two models leading to stable and accurate forecast results are constructed for the prices of the two commodities. In particular, the models' performance in terms of the relative root mean square error is 1.86% and 3.61% for platinum and palladium, respectively, for the overall sample. Results in this work could help technical forecasts and policy analysis. The forecast framework might be extended to other different commodities.
Author Xu, Xiaojie
Zhang, Yun
Author_xml – sequence: 1
  givenname: Xiaojie
  surname: Xu
  fullname: Xu, Xiaojie
  organization: NC State University
– sequence: 2
  givenname: Yun
  surname: Zhang
  fullname: Zhang, Yun
  organization: NC State University
BookMark eNqFkMtKAzEUhoNUsFUfQRhwPTW3mUlxUyneoKALXYczmUw7NU1qkkH69mZo3bjQTU4Svv-c5JugkXVWI3RF8JRggW8wKwmeETGlmPIpZQxXGJ-gMSkYzTnhZITGA5MP0BmahLDBGDPBxRjNXw3EzvbbDGyT7cAYaLp02vlO6ax1XisICVhlce1dv1pnVvceTCrxy_mPcIFOWzBBXx7rOXp_uH9bPOXLl8fnxd0yV4yJmLdAG9GWmDTAIS3AxIwCF6oSWlPV6FnDgJR1rSmZsZrotCe6Kqq65ulOsXN0fei78-6z1yHKjeu9TSMlo4XAvCoLkajbA6W8C8HrVqoupg86Gz10RhIsB2XyR5kclMmjspQufqWThi34_b-5-SHX2WRsC0mMaWSEvXG-9WBVlx75d4tv7-iFUQ
CitedBy_id crossref_primary_10_1007_s13563_024_00457_8
crossref_primary_10_1007_s42824_024_00156_3
crossref_primary_10_1142_S2424786325500033
crossref_primary_10_1007_s42824_025_00175_8
crossref_primary_10_1142_S2630534825500019
crossref_primary_10_1016_j_jclepro_2025_146266
crossref_primary_10_1108_JM2_05_2024_0150
crossref_primary_10_1142_S2737599424500130
crossref_primary_10_1177_03019233241254891
crossref_primary_10_1007_s42824_024_00123_y
crossref_primary_10_1007_s13563_024_00483_6
crossref_primary_10_1108_AJEB_01_2024_0007
crossref_primary_10_1108_JM2_09_2023_0207
crossref_primary_10_1007_s11135_025_02080_3
crossref_primary_10_1007_s11135_025_02233_4
crossref_primary_10_1007_s13563_025_00520_y
crossref_primary_10_1080_0013791X_2025_2464130
crossref_primary_10_1177_03019233241265194
crossref_primary_10_1108_JM2_12_2023_0315
crossref_primary_10_1007_s00521_024_10270_7
crossref_primary_10_1142_S2972335325500024
crossref_primary_10_1108_JFMPC_02_2024_0011
crossref_primary_10_1177_03019233241249361
crossref_primary_10_1007_s13563_024_00472_9
crossref_primary_10_1007_s13563_024_00477_4
Cites_doi 10.1108/IJHMA-03-2022-0039
10.1080/13504850010018734
10.1016/j.iswa.2022.200061
10.1002/ajae.12041
10.1016/j.qref.2012.04.004
10.1080/00036848100000016
10.1090/qam/10666
10.2307/1391615
10.1515/jafio-2022-0009
10.1080/10835547.2022.2110668
10.1093/erae/jbz033
10.1016/j.asoc.2020.106996
10.1016/S0165-1765(02)00331-2
10.1002/for.3980020306
10.1007/s13563-022-00357-9
10.1007/s11408-019-00330-7
10.1088/1742-6596/1874/1/012087
10.1017/nie.2021.34
10.1016/j.asoc.2019.105837
10.1108/ECON-05-2022-0026
10.1080/02664763.2016.1259399
10.1007/s11432-018-9714-5
10.2307/1241659
10.13140/RG.2.2.30153.49768
10.1007/s43674-022-00045-9
10.1007/s00181-017-1322-6
10.1515/jafio-2017-0018
10.2307/1349096
10.1007/s00521-024-09531-2
10.1038/s41598-020-80820-1
10.1109/NAECON.2018.8556738
10.1016/j.ijforecast.2004.01.002
10.1080/03610918.2013.786780
10.1016/j.resourpol.2017.08.006
10.1016/S0169-2070(96)00719-4
10.1109/SIU.2017.7960507
10.1016/j.jspi.2006.01.017
10.1109/CATA.2018.8398669
10.3390/mca21020020
10.3389/fpls.2020.624273
10.1111/j.1540-5915.1988.tb00302.x
10.1145/3417473.3417480
10.1007/s00521-022-07309-y
10.1016/j.resourpol.2019.02.014
10.1016/0305-0483(87)90051-X
10.1007/s00181-018-1558-9
10.1108/IJHMA-07-2022-0098
10.1016/j.jbankfin.2007.05.009
10.3390/su12166533
10.1016/j.neucom.2007.01.009
10.1002/isaf.1487
10.5753/kdmile.2020.11966
10.2307/1243059
10.1016/j.najef.2016.06.002
10.12720/jiii.3.3.253-257
10.1504/IJBD.2015.071403
10.1016/j.agrformet.2018.09.002
10.1186/s40854-019-0131-7
10.1023/A:1015051912125
10.1007/s00181-021-02190-5
10.1080/02664763.2017.1423044
10.17093/alphanumeric.290381
10.1016/j.resourpol.2020.101623
10.1016/j.mlwa.2021.100140
10.1108/IJHMA-09-2022-0134
10.1016/j.resourpol.2009.12.002
10.1201/9781315139470
10.1080/09599916.2021.1996446
10.3390/resources6040061
10.1016/j.iswa.2022.200084
10.5815/ijieeb.2019.06.05
10.1017/S0081305200017611
10.2991/ijcis.d.200214.002
10.1108/JES-06-2021-0316
10.1198/073500102753410444
10.3389/fpls.2020.01120
10.1002/for.2665
10.4236/am.2018.95034
10.1080/09599916.2022.2114926
10.1590/S0101-74382007000200003
10.1016/0169-2070(90)90101-G
10.1016/j.iswa.2021.200052
10.2307/1349248
10.1007/s00181-017-1245-2
10.1088/1742-6596/1682/1/012007
10.1093/erae/jby036
10.1016/j.energy.2020.118750
10.1016/j.compag.2018.10.014
10.1007/s11238-012-9305-8
10.1016/0925-2312(95)00020-8
10.1016/j.resourpol.2019.101542
10.1155/2021/6507688
10.1016/S0893-6080(05)80056-5
10.37394/23207.2021.18.92
10.2307/1239819
10.1007/978-3-030-24302-9_13
10.1007/s13563-022-00311-9
10.1002/fut.22179
10.1016/j.agrformet.2020.108317
10.1007/s11408-022-00421-y
10.1109/ICCISci.2012.6297271
10.29327/2520355.7.1-1
10.1002/for.2385
10.1007/s43674-023-00054-2
10.1016/j.mlwa.2021.100035
10.1007/s10479-021-04187-w
10.1007/s00521-020-05250-6
10.1016/0167-2681(92)90030-F
10.1002/(SICI)1520-6297(199803/04)14:2<107::AID-AGR3>3.0.CO;2-6
10.22004/ag.econ.205332
10.1016/j.ejor.2009.01.009
10.3389/fsufs.2021.655206
10.1145/2987491.2987508
10.1137/0111030
10.22004/ag.econ.169806
10.22004/ag.econ.285463
10.1016/j.eneco.2009.08.001
10.1007/s00181-016-1094-4
10.3390/jrfm14050198
10.1007/s11053-019-09473-w
10.1016/0308-521X(86)90029-6
10.1016/S0169-2070(85)80067-4
10.1111/1467-9787.00287
10.1515/jafio-2016-0006
10.1080/1350485032000095366
10.1109/IJCNN.2019.8851880
10.1002/isaf.1519
10.1016/j.compag.2021.106120
10.1016/j.irfa.2017.04.002
10.14445/22315381/IJETT-V68I12P220
10.1111/j.1467-8489.2011.00534.x
10.1007/s11408-017-0299-7
ContentType Journal Article
Copyright 2024 Taylor & Francis Group, LLC 2024
2024 Taylor & Francis Group, LLC
Copyright_xml – notice: 2024 Taylor & Francis Group, LLC 2024
– notice: 2024 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2024.2330700
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 2973
ExternalDocumentID 10_1080_03610918_2024_2330700
2330700
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-fa2d8f601da4a1daa3892a48c78ee2cde9d3a16bbe2193b1e16b1e757bb4be2c3
IEDL.DBID TFW
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001189341900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0361-0918
IngestDate Wed Oct 08 03:02:35 EDT 2025
Tue Nov 18 22:25:08 EST 2025
Sat Nov 29 07:37:10 EST 2025
Mon Oct 20 23:46:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-fa2d8f601da4a1daa3892a48c78ee2cde9d3a16bbe2193b1e16b1e757bb4be2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3258047658
PQPubID 186203
PageCount 15
ParticipantIDs proquest_journals_3258047658
crossref_citationtrail_10_1080_03610918_2024_2330700
informaworld_taylorfrancis_310_1080_03610918_2024_2330700
crossref_primary_10_1080_03610918_2024_2330700
PublicationCentury 2000
PublicationDate 2025-08-03
PublicationDateYYYYMMDD 2025-08-03
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-03
  day: 03
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_28_1
e_1_3_2_20_1
e_1_3_2_130_1
e_1_3_2_43_1
e_1_3_2_85_1
e_1_3_2_24_1
e_1_3_2_47_1
e_1_3_2_89_1
de Melo B. (e_1_3_2_40_1) 2004; 33
e_1_3_2_146_1
e_1_3_2_127_1
e_1_3_2_169_1
e_1_3_2_62_1
e_1_3_2_104_1
e_1_3_2_142_1
e_1_3_2_81_1
e_1_3_2_165_1
e_1_3_2_108_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_7_1
Rasheed A. (e_1_3_2_88_1) 2021
Xu X. (e_1_3_2_123_1) 2019; 39
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_77_1
Xu X. (e_1_3_2_138_1) 2022
e_1_3_2_161_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_96_1
e_1_3_2_3_1
e_1_3_2_92_1
e_1_3_2_135_1
e_1_3_2_116_1
e_1_3_2_158_1
e_1_3_2_131_1
e_1_3_2_112_1
e_1_3_2_154_1
Shimizu S. (e_1_3_2_99_1) 2006; 7
e_1_3_2_139_1
e_1_3_2_29_1
Karasu S. (e_1_3_2_63_1) 2017; 4
Erkan T. E. (e_1_3_2_46_1) 2020; 5
e_1_3_2_152_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_86_1
e_1_3_2_25_1
e_1_3_2_48_1
e_1_3_2_126_1
e_1_3_2_149_1
e_1_3_2_168_1
e_1_3_2_103_1
e_1_3_2_122_1
e_1_3_2_145_1
e_1_3_2_164_1
e_1_3_2_17_1
e_1_3_2_2_1
e_1_3_2_141_1
e_1_3_2_160_1
e_1_3_2_32_1
e_1_3_2_74_1
e_1_3_2_6_1
e_1_3_2_13_1
e_1_3_2_59_1
e_1_3_2_97_1
e_1_3_2_36_1
e_1_3_2_78_1
e_1_3_2_93_1
Aruna S. (e_1_3_2_10_1) 2021
e_1_3_2_115_1
e_1_3_2_51_1
Xu X. (e_1_3_2_113_1) 2015; 35
e_1_3_2_111_1
e_1_3_2_134_1
e_1_3_2_153_1
e_1_3_2_70_1
Huy H. T. (e_1_3_2_55_1) 2019; 14
e_1_3_2_119_1
e_1_3_2_49_1
Li J. (e_1_3_2_73_1) 2020
e_1_3_2_151_1
e_1_3_2_41_1
e_1_3_2_87_1
e_1_3_2_22_1
e_1_3_2_64_1
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_68_1
e_1_3_2_125_1
e_1_3_2_148_1
Babula R. A. (e_1_3_2_14_1) 2004; 35
e_1_3_2_83_1
e_1_3_2_121_1
e_1_3_2_167_1
e_1_3_2_60_1
e_1_3_2_102_1
e_1_3_2_144_1
Jalali M. F. M. (e_1_3_2_58_1) 2018; 3
e_1_3_2_106_1
e_1_3_2_129_1
e_1_3_2_9_1
e_1_3_2_18_1
Naveena K. (e_1_3_2_84_1) 2017
e_1_3_2_163_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_140_1
e_1_3_2_5_1
e_1_3_2_37_1
e_1_3_2_56_1
e_1_3_2_79_1
e_1_3_2_98_1
Lubinsky B. (e_1_3_2_75_1) 2008
e_1_3_2_114_1
Mustaffa Z. (e_1_3_2_82_1) 2006; 10
e_1_3_2_94_1
e_1_3_2_137_1
e_1_3_2_110_1
e_1_3_2_156_1
e_1_3_2_71_1
e_1_3_2_90_1
Hageluken C. (e_1_3_2_50_1) 2006; 60
e_1_3_2_133_1
Khan T. A. (e_1_3_2_67_1) 2019
e_1_3_2_118_1
Bessler D. A. (e_1_3_2_19_1) 1982; 34
e_1_3_2_27_1
Yang J. (e_1_3_2_157_1) 2003; 4
Shimizu S. (e_1_3_2_100_1) 2011; 12
Ur Sami I. (e_1_3_2_107_1) 2017; 8
e_1_3_2_42_1
e_1_3_2_65_1
e_1_3_2_150_1
e_1_3_2_23_1
e_1_3_2_69_1
Khamis A. (e_1_3_2_66_1) 2014; 3
e_1_3_2_80_1
e_1_3_2_101_1
e_1_3_2_124_1
e_1_3_2_147_1
e_1_3_2_61_1
e_1_3_2_105_1
e_1_3_2_120_1
e_1_3_2_143_1
e_1_3_2_166_1
e_1_3_2_128_1
e_1_3_2_109_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_162_1
e_1_3_2_30_1
e_1_3_2_76_1
e_1_3_2_11_1
e_1_3_2_53_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_57_1
e_1_3_2_136_1
e_1_3_2_159_1
e_1_3_2_95_1
e_1_3_2_132_1
e_1_3_2_155_1
e_1_3_2_72_1
e_1_3_2_91_1
e_1_3_2_117_1
References_xml – ident: e_1_3_2_61_1
– ident: e_1_3_2_137_1
  doi: 10.1108/IJHMA-03-2022-0039
– ident: e_1_3_2_158_1
  doi: 10.1080/13504850010018734
– ident: e_1_3_2_147_1
  doi: 10.1016/j.iswa.2022.200061
– volume: 35
  start-page: 29
  year: 2004
  ident: e_1_3_2_14_1
  article-title: Modeling us soy-based markets with directed acyclic graphs and Bernanke structural var methods: The impacts of high soy meal and soybean prices
  publication-title: Journal of Food Distribution Research
– volume: 4
  start-page: 137
  year: 2017
  ident: e_1_3_2_63_1
  article-title: Estimation of fast varied wind speed based on narx neural network by using curve fitting
  publication-title: International Journal of Energy Applications and Technologies
– ident: e_1_3_2_125_1
  doi: 10.1002/ajae.12041
– ident: e_1_3_2_9_1
  doi: 10.1016/j.qref.2012.04.004
– ident: e_1_3_2_21_1
  doi: 10.1080/00036848100000016
– ident: e_1_3_2_71_1
  doi: 10.1090/qam/10666
– ident: e_1_3_2_27_1
  doi: 10.2307/1391615
– ident: e_1_3_2_44_1
– ident: e_1_3_2_141_1
  doi: 10.1515/jafio-2022-0009
– ident: e_1_3_2_145_1
  doi: 10.1080/10835547.2022.2110668
– ident: e_1_3_2_104_1
  doi: 10.1093/erae/jbz033
– ident: e_1_3_2_8_1
  doi: 10.1016/j.asoc.2020.106996
– ident: e_1_3_2_11_1
  doi: 10.1016/S0165-1765(02)00331-2
– ident: e_1_3_2_13_1
– ident: e_1_3_2_32_1
  doi: 10.1002/for.3980020306
– ident: e_1_3_2_148_1
  doi: 10.1007/s13563-022-00357-9
– ident: e_1_3_2_124_1
  doi: 10.1007/s11408-019-00330-7
– ident: e_1_3_2_101_1
  doi: 10.1088/1742-6596/1874/1/012087
– ident: e_1_3_2_152_1
  doi: 10.1017/nie.2021.34
– ident: e_1_3_2_90_1
  doi: 10.1016/j.asoc.2019.105837
– ident: e_1_3_2_153_1
  doi: 10.1108/ECON-05-2022-0026
– start-page: 52
  year: 2019
  ident: e_1_3_2_67_1
  article-title: Comparative performance analysis of Levenberg-Marquardt, Bayesian regularization and scaled conjugate gradient for the prediction of flash floods
  publication-title: Journal of Information Communication Technologies and Robotic Applications
– ident: e_1_3_2_15_1
– ident: e_1_3_2_115_1
  doi: 10.1080/02664763.2016.1259399
– ident: e_1_3_2_59_1
  doi: 10.1007/s11432-018-9714-5
– volume: 7
  year: 2006
  ident: e_1_3_2_99_1
  article-title: A linear non-Gaussian acyclic model for causal discovery
  publication-title: Journal of Machine Learning Research
– volume: 5
  start-page: 87
  year: 2020
  ident: e_1_3_2_46_1
  article-title: On predictability of precious metals towards robust trading
  publication-title: International Scientific Journal “Industry 4.0”
– ident: e_1_3_2_24_1
  doi: 10.2307/1241659
– year: 2021
  ident: e_1_3_2_88_1
  article-title: District wise price forecasting of wheat in Pakistan using deep learning
  publication-title: arXiv Preprint arXiv:2103.04781
– ident: e_1_3_2_111_1
  doi: 10.13140/RG.2.2.30153.49768
– ident: e_1_3_2_133_1
  doi: 10.1007/s43674-022-00045-9
– ident: e_1_3_2_118_1
  doi: 10.1007/s00181-017-1322-6
– ident: e_1_3_2_121_1
  doi: 10.1515/jafio-2017-0018
– ident: e_1_3_2_31_1
  doi: 10.2307/1349096
– ident: e_1_3_2_60_1
  doi: 10.1007/s00521-024-09531-2
– ident: e_1_3_2_97_1
  doi: 10.1038/s41598-020-80820-1
– ident: e_1_3_2_16_1
  doi: 10.1109/NAECON.2018.8556738
– ident: e_1_3_2_109_1
  doi: 10.1016/j.ijforecast.2004.01.002
– volume: 3
  start-page: 1
  year: 2018
  ident: e_1_3_2_58_1
  article-title: Forecasting palladium price using gm (1, 1)
  publication-title: Global Analysis and Discrete Mathematics
– ident: e_1_3_2_165_1
– ident: e_1_3_2_38_1
  doi: 10.1080/03610918.2013.786780
– volume: 12
  start-page: 1225
  year: 2011
  ident: e_1_3_2_100_1
  article-title: Directlingam: A direct method for learning a linear non-Gaussian structural equation model
  publication-title: The Journal of Machine Learning Research
– ident: e_1_3_2_54_1
  doi: 10.1016/j.resourpol.2017.08.006
– ident: e_1_3_2_53_1
  doi: 10.1016/S0169-2070(96)00719-4
– ident: e_1_3_2_64_1
  doi: 10.1109/SIU.2017.7960507
– ident: e_1_3_2_98_1
  doi: 10.1016/j.jspi.2006.01.017
– ident: e_1_3_2_6_1
  doi: 10.1109/CATA.2018.8398669
– ident: e_1_3_2_65_1
  doi: 10.3390/mca21020020
– ident: e_1_3_2_161_1
  doi: 10.3389/fpls.2020.624273
– volume: 14
  year: 2019
  ident: e_1_3_2_55_1
  article-title: Econometric combined with neural network for coffee price forecasting
  publication-title: Journal of Applied Economic Sciences
– ident: e_1_3_2_103_1
– ident: e_1_3_2_26_1
  doi: 10.1111/j.1540-5915.1988.tb00302.x
– ident: e_1_3_2_163_1
  doi: 10.1145/3417473.3417480
– ident: e_1_3_2_144_1
  doi: 10.1007/s00521-022-07309-y
– ident: e_1_3_2_4_1
  doi: 10.1016/j.resourpol.2019.02.014
– ident: e_1_3_2_25_1
  doi: 10.1016/0305-0483(87)90051-X
– ident: e_1_3_2_85_1
  doi: 10.1007/s00181-018-1558-9
– ident: e_1_3_2_139_1
  doi: 10.1108/IJHMA-07-2022-0098
– ident: e_1_3_2_102_1
– ident: e_1_3_2_159_1
  doi: 10.1016/j.jbankfin.2007.05.009
– ident: e_1_3_2_48_1
  doi: 10.3390/su12166533
– year: 2020
  ident: e_1_3_2_73_1
  article-title: A novel text-based framework for forecasting agricultural futures using massive online news headlines
  publication-title: International Journal of Forecasting
– ident: e_1_3_2_169_1
  doi: 10.1016/j.neucom.2007.01.009
– ident: e_1_3_2_87_1
  doi: 10.1002/isaf.1487
– ident: e_1_3_2_112_1
– ident: e_1_3_2_45_1
  doi: 10.5753/kdmile.2020.11966
– ident: e_1_3_2_20_1
  doi: 10.2307/1243059
– ident: e_1_3_2_86_1
  doi: 10.1016/j.najef.2016.06.002
– ident: e_1_3_2_105_1
  doi: 10.12720/jiii.3.3.253-257
– ident: e_1_3_2_106_1
  doi: 10.1504/IJBD.2015.071403
– ident: e_1_3_2_7_1
  doi: 10.1016/j.agrformet.2018.09.002
– ident: e_1_3_2_94_1
  doi: 10.1186/s40854-019-0131-7
– ident: e_1_3_2_3_1
  doi: 10.1023/A:1015051912125
– ident: e_1_3_2_136_1
  doi: 10.1007/s00181-021-02190-5
– volume: 3
  start-page: 19
  year: 2014
  ident: e_1_3_2_66_1
  article-title: Forecasting wheat price using backpropagation and narx neural network
  publication-title: The International Journal of Engineering and Science
– ident: e_1_3_2_117_1
  doi: 10.1080/02664763.2017.1423044
– ident: e_1_3_2_35_1
  doi: 10.17093/alphanumeric.290381
– volume: 10
  start-page: 17486
  year: 2006
  ident: e_1_3_2_82_1
  article-title: Price predictive analysis mechanism utilizing grey wolf optimizer-least squares support vector machines
  publication-title: ARPN Journal of Engineering and Applied Sciences
– ident: e_1_3_2_56_1
  doi: 10.1016/j.resourpol.2020.101623
– ident: e_1_3_2_132_1
  doi: 10.1016/j.mlwa.2021.100140
– ident: e_1_3_2_140_1
  doi: 10.1108/IJHMA-09-2022-0134
– ident: e_1_3_2_17_1
  doi: 10.1016/j.resourpol.2009.12.002
– volume: 34
  start-page: 16
  year: 1982
  ident: e_1_3_2_19_1
  article-title: Adaptive expectations, the exponentially weighted forecast, and optimal statistical predictors: A revisit
  publication-title: Agricultural Economics Research
– ident: e_1_3_2_34_1
  doi: 10.1201/9781315139470
– ident: e_1_3_2_146_1
  doi: 10.1080/09599916.2021.1996446
– ident: e_1_3_2_95_1
  doi: 10.3390/resources6040061
– ident: e_1_3_2_149_1
  doi: 10.1016/j.iswa.2022.200084
– ident: e_1_3_2_41_1
  doi: 10.5815/ijieeb.2019.06.05
– ident: e_1_3_2_78_1
  doi: 10.1017/S0081305200017611
– ident: e_1_3_2_164_1
  doi: 10.2991/ijcis.d.200214.002
– year: 2022
  ident: e_1_3_2_138_1
  article-title: Forecasting the total market value of a shares traded in the Shenzhen stock exchange via the neural network
  publication-title: Economics Bulletin
– ident: e_1_3_2_143_1
  doi: 10.1108/JES-06-2021-0316
– ident: e_1_3_2_43_1
  doi: 10.1198/073500102753410444
– start-page: 1385
  year: 2021
  ident: e_1_3_2_10_1
  article-title: Prediction of potential gold prices using machine learning approach
  publication-title: Annals of the Romanian Society for Cell Biology
– ident: e_1_3_2_96_1
  doi: 10.3389/fpls.2020.01120
– ident: e_1_3_2_47_1
  doi: 10.1002/for.2665
– ident: e_1_3_2_81_1
  doi: 10.4236/am.2018.95034
– ident: e_1_3_2_150_1
  doi: 10.1080/09599916.2022.2114926
– ident: e_1_3_2_52_1
– volume: 39
  start-page: 2052
  year: 2019
  ident: e_1_3_2_123_1
  article-title: Contemporaneous causal orderings of csi300 and futures prices through directed acyclic graphs
  publication-title: Economics Bulletin
– ident: e_1_3_2_79_1
  doi: 10.1590/S0101-74382007000200003
– ident: e_1_3_2_37_1
  doi: 10.1016/0169-2070(90)90101-G
– ident: e_1_3_2_2_1
– ident: e_1_3_2_130_1
  doi: 10.1016/j.iswa.2021.200052
– ident: e_1_3_2_33_1
  doi: 10.2307/1349248
– ident: e_1_3_2_119_1
  doi: 10.1007/s00181-017-1245-2
– ident: e_1_3_2_72_1
  doi: 10.1088/1742-6596/1682/1/012007
– ident: e_1_3_2_122_1
  doi: 10.1093/erae/jby036
– ident: e_1_3_2_162_1
– ident: e_1_3_2_62_1
  doi: 10.1016/j.energy.2020.118750
– start-page: 0975
  year: 2017
  ident: e_1_3_2_84_1
  article-title: Hybrid time series modelling for forecasting the price of washed coffee (Arabica plantation coffee) in India
  publication-title: International Journal of Agriculture Sciences
– ident: e_1_3_2_70_1
  doi: 10.1016/j.compag.2018.10.014
– ident: e_1_3_2_28_1
  doi: 10.1007/s11238-012-9305-8
– volume: 8
  start-page: 92
  year: 2017
  ident: e_1_3_2_107_1
  article-title: Predicting future gold rates using machine learning approach
  publication-title: International Journal of Advanced Computer Science and Applications
– ident: e_1_3_2_69_1
  doi: 10.1016/0925-2312(95)00020-8
– ident: e_1_3_2_127_1
– ident: e_1_3_2_93_1
  doi: 10.1016/j.resourpol.2019.101542
– ident: e_1_3_2_167_1
  doi: 10.1155/2021/6507688
– ident: e_1_3_2_80_1
  doi: 10.1016/S0893-6080(05)80056-5
– ident: e_1_3_2_18_1
  doi: 10.37394/23207.2021.18.92
– ident: e_1_3_2_30_1
  doi: 10.2307/1239819
– ident: e_1_3_2_42_1
  doi: 10.1007/978-3-030-24302-9_13
– ident: e_1_3_2_134_1
  doi: 10.1007/s13563-022-00311-9
– ident: e_1_3_2_160_1
  doi: 10.1002/fut.22179
– ident: e_1_3_2_49_1
  doi: 10.1016/j.agrformet.2020.108317
– ident: e_1_3_2_142_1
  doi: 10.1007/s11408-022-00421-y
– ident: e_1_3_2_83_1
  doi: 10.1109/ICCISci.2012.6297271
– ident: e_1_3_2_74_1
  doi: 10.29327/2520355.7.1-1
– ident: e_1_3_2_110_1
  doi: 10.1002/for.2385
– ident: e_1_3_2_151_1
  doi: 10.1007/s43674-023-00054-2
– ident: e_1_3_2_131_1
  doi: 10.1016/j.mlwa.2021.100035
– volume: 4
  start-page: 37
  year: 2003
  ident: e_1_3_2_157_1
  article-title: Price and volatility transmission in international wheat futures markets
  publication-title: Annals of Economics and Finance
– ident: e_1_3_2_57_1
  doi: 10.1007/s10479-021-04187-w
– ident: e_1_3_2_168_1
  doi: 10.1007/s00521-020-05250-6
– ident: e_1_3_2_22_1
  doi: 10.1016/0167-2681(92)90030-F
– ident: e_1_3_2_154_1
  doi: 10.1002/(SICI)1520-6297(199803/04)14:2<107::AID-AGR3>3.0.CO;2-6
– ident: e_1_3_2_128_1
  doi: 10.22004/ag.econ.205332
– ident: e_1_3_2_156_1
  doi: 10.1016/j.ejor.2009.01.009
– volume: 60
  start-page: 31
  year: 2006
  ident: e_1_3_2_50_1
  article-title: Markets for the catalyst metals platinum, palladium and rhodium
  publication-title: Metall-Berlin
– ident: e_1_3_2_166_1
  doi: 10.3389/fsufs.2021.655206
– volume: 33
  year: 2004
  ident: e_1_3_2_40_1
  article-title: Daily sugar price forecasting using the mixture of local expert models
  publication-title: WIT Transactions on Information and Communication Technologies
– ident: e_1_3_2_12_1
  doi: 10.1145/2987491.2987508
– ident: e_1_3_2_77_1
– ident: e_1_3_2_76_1
  doi: 10.1137/0111030
– ident: e_1_3_2_126_1
  doi: 10.22004/ag.econ.169806
– ident: e_1_3_2_36_1
  doi: 10.22004/ag.econ.285463
– ident: e_1_3_2_108_1
  doi: 10.1016/j.eneco.2009.08.001
– ident: e_1_3_2_114_1
  doi: 10.1007/s00181-016-1094-4
– ident: e_1_3_2_92_1
  doi: 10.3390/jrfm14050198
– ident: e_1_3_2_5_1
  doi: 10.1007/s11053-019-09473-w
– ident: e_1_3_2_23_1
  doi: 10.1016/0308-521X(86)90029-6
– ident: e_1_3_2_68_1
  doi: 10.1016/S0169-2070(85)80067-4
– ident: e_1_3_2_29_1
  doi: 10.1111/1467-9787.00287
– ident: e_1_3_2_120_1
  doi: 10.1515/jafio-2016-0006
– ident: e_1_3_2_155_1
  doi: 10.1080/1350485032000095366
– ident: e_1_3_2_91_1
  doi: 10.1109/IJCNN.2019.8851880
– ident: e_1_3_2_135_1
  doi: 10.1002/isaf.1519
– ident: e_1_3_2_129_1
  doi: 10.1016/j.compag.2021.106120
– ident: e_1_3_2_39_1
  doi: 10.1016/j.irfa.2017.04.002
– ident: e_1_3_2_51_1
  doi: 10.14445/22315381/IJETT-V68I12P220
– ident: e_1_3_2_89_1
  doi: 10.1111/j.1467-8489.2011.00534.x
– ident: e_1_3_2_116_1
  doi: 10.1007/s11408-017-0299-7
– year: 2008
  ident: e_1_3_2_75_1
  article-title: Prediction of platinum prices using dynamically weighted mixture of experts
  publication-title: arXiv Preprint arXiv:0812.2785
– volume: 35
  start-page: 2581
  year: 2015
  ident: e_1_3_2_113_1
  article-title: Cointegration among regional corn cash prices
  publication-title: Economics Bulletin
SSID ssj0003848
Score 2.501003
Snippet To many commodity market participants, forecasts of price series represent a critical task. In this work, nonlinear autoregressive neural network models'...
To many commodity market participants, forecasts of price series represent a critical task. In this work, nonlinear autoregressive neural network models’...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2959
SubjectTerms Commodities
Forecasting
Machine learning
Neural network
Neural networks
Palladium
Platinum
Policy analysis
Price forecasting
Pricing
Time series
Title Platinum and palladium price forecasting through neural networks
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2024.2330700
https://www.proquest.com/docview/3258047658
Volume 54
WOSCitedRecordID wos001189341900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1532-4141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003848
  issn: 0361-0918
  databaseCode: TFW
  dateStart: 19760101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2keKgHq1WxWiUHr6nN7tbd3BSxeNDSQ9Xewn6CoLE0rb_fmWRTLCI96CUkgUk2szOzM8vLG0IuIAc1mksWC2pczG1C41TZJJZaeU-lc7LkKXh-EKORnE7TcUATFgFWiTW0r4giyliNzq10USPiLiHoIp0lArMo71GGZotVOyz96JqT4csqFjNZ9s9CiRhF6n94fnvK2uq0xl36I1aXC9Cw9Q9D3yO7IfuMbipz2SdbLm-TVt3ZIQqO3iY7jys216JNmpiRVoTOB-R6jOi5fPkewSCiGe7D21e4miE7UQRf4owqEEsdhRZAEVJmwkvzCnBeHJKn4d3k9j4ObRhiA_XrIvaKWumhcLOKKzgoyHGo4tIImEpqrEstU8mV1g6iH9OJg_PEiYHQmsM9w45II__I3TGJPPdWmL5UKmFQSTqpzKBvU-kgMQFh0SG8Vn9mAkc5tsp4y5KayjQoMEMFZkGBHdJbic0qko5NAun3uc0W5e6Ir1qZZGyDbLc2hCz4O4jQgexzAencyR8efUqaFNsLIyKFdUljMV-6M7JtPmGO5-elZX8BMcHzWg
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED9kCs4Hp1NxOrUPvnauSWrTN0UcE7fhw9S9lTRJQdA69uHf710_xobIHvSltIVL08vlchcuvx_AJcagOhaSuwHT1hXGY26ojOfKWCUJk9bKDKfgpRcMBnI0CpfPwlBZJeXQSQ4Ukflqmty0GV2WxF2h1yU8S6rMYqLFONktpu2bPq61hJ8_7LwuvDGXGYMWibgkU57i-a2ZlfVpBb30h7fOlqBO7T86vwe7RQDq3OYWsw8bNq1DrSR3cIq5Xoed_gLQdVqHKgWlOabzAdw8UQFdOv9wsBfOmLbizRs-jQmgyMFfsVpNqZzaKViAHELNxI-mec359BCeO_fDu65bMDG4GlPYmZsoZmSCuZtRQuFFYZjDlJA6wNFk2tjQcOVdx7FFB8hjz-K9ZwM_iGOB7zQ_gkr6mdpjcBKRmEC3pVIex2TSSqX9tgmlxdgEhYMGiFL_kS5gyokt4z3ySjTTQoERKTAqFNiA1kJsnON0rBMIlwc3mmUbJEnOZhLxNbLN0hKiYsqjCPNlWwQY0Z38oekL2O4O-72o9zB4PIUqI7ZhKlDhTajMJnN7Blv6C8d7cp6Z-Ten-_eE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLbQQGgcGAwQ49kD18KaZDS9gYAJxJh24HWr0jwkJCgT3fj92G06gRDiAJeqreQ0cRzHjr5-BjjAGFRnQvIwZtqGwkQsTJSJQpkp55i0VpY8BfeDeDiUj4_JyKMJCw-rpBzaVUQRpa-mxT02rkbEHaHTJTpLAmYxccg4mS1m7fMYOh-Tkd_2H2bOmMuygBaJhCRT_8TzUzNftqcv5KXfnHW5A_Vb_9D3FVj24WdwWtnLKszZvA2turRD4Fd6G5ZuZnSuRRuaFJJWjM5rcDIi-Fw-fQmwE8GYDuLNEz6NiZ4owJFYrQoCUwe-BlBAnJn40bxCnBfrcNe_uD27DH0dhlBjAjsJnWJGOszcjBIKLwqDHKaE1DHOJdPGJoar6DjLLLo_nkUW7yMb9-IsE_hO8w1o5K-53YTACWdi3ZVKRRxTSSuV7nVNIi1GJigcd0DU6k-1JymnWhnPaVRzmXoFpqTA1CuwA4czsXHF0vGbQPJ5btNJeTziqlomKf9Fdqc2hNQveBRhPdkVMcZzW39oeh8WR-f9dHA1vN6GJqNSw4RO4TvQmLxN7S4s6Hec7re90sg_ALsr9jY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Platinum+and+palladium+price+forecasting+through+neural+networks&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Xu%2C+Xiaojie&rft.au=Zhang%2C+Yun&rft.date=2025-08-03&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=54&rft.issue=8&rft.spage=2959&rft.epage=2973&rft_id=info:doi/10.1080%2F03610918.2024.2330700&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2024_2330700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon