A New Unsupervised Online Early Fault Detection Framework of Rolling Bearings Based on Granular Feature Forecasting
In online scenarios, the monitoring signals are collected in the form of streaming data and would raise some requirements for early fault detection (EFD) of rolling bearings: 1) enhancing the detection accuracy of online data; 2) lowering the computational cost of real-time detection; 3) reducing fa...
Uložené v:
| Vydané v: | IEEE access Ročník 9; s. 159684 - 159698 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!