Nonlinear inverse heat conduction problem of surface temperature estimation by calibration integral equation method
A calibration integral equation method is proposed for estimating the surface temperature in the context of a nonlinear inverse heat conduction problem. The temperature-dependent thermophysical properties and probe positioning are implicitly accounted in the integral equation formulation through cal...
Uložené v:
| Vydané v: | Numerical heat transfer. Part B, Fundamentals Ročník 73; číslo 5; s. 263 - 291 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
Taylor & Francis
04.05.2018
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 1040-7790, 1521-0626 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | A calibration integral equation method is proposed for estimating the surface temperature in the context of a nonlinear inverse heat conduction problem. The temperature-dependent thermophysical properties and probe positioning are implicitly accounted in the integral equation formulation through calibration tests. A first kind Chebyshev expansion is applied to represent the temperature-dependent property transform function. The undetermined expansion coefficients associated with the Chebyshev expansion are then estimated through two calibration tests. Regularization of the ill-posed problem is achieved by the future-time method. The optimal regularization parameter is estimated using a phase plane and cross-correlation phase plane analyses. Numerical simulation for stainless steel yields highly favorable surface temperature prediction. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1040-7790 1521-0626 |
| DOI: | 10.1080/10407790.2018.1464316 |