Study on intelligent prediction method of rock drillability based on Bayesian lithology classification and optimized BP neural network

With the rapid development of shale gas in northeastern Sichuan province, problems such as low drilling rate, long drilling cycle and serious bit wear are becoming more and more prominent in shale gas drilling process. This paper proposes new prediction theory with two steps based on logging data se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Petroleum science and technology Jg. 40; H. 17; S. 2141 - 2162
Hauptverfasser: Fang, Xinxin, Feng, Hong, Wang, Hao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 12.05.2022
Taylor & Francis Ltd
Schlagworte:
ISSN:1091-6466, 1532-2459
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the rapid development of shale gas in northeastern Sichuan province, problems such as low drilling rate, long drilling cycle and serious bit wear are becoming more and more prominent in shale gas drilling process. This paper proposes new prediction theory with two steps based on logging data sensitive to lithology by introducing Bayesian classifier and Self Adaptive Double Chain Quantum Genetic Algorithm (S-DC-QGA) which could optimize BP neural network prediction model. In the first step, the Bayesian network classifier achieved the classification and recognition of lithology, improved the correlation of model sample data, and enhanced the accuracy and speed of lithology classification. In the second step, S-DC-QGA characterized as the global optimization is used to optimize the number of hidden layer nodes, weights and thresholds of the BP neural network. Results showed that Bayesian lithologies classification enhanced the correlation of samples, moreover optimized BP neural network solved overfitting, random initial weights of BP itself and oscillation of fitting and generalization ability with slight change of network parameters, improving the prediction accuracy of rock drillability parameters and the generalization ability of the model. The findings of this study can help for better drilling design and improvement of mechanical drilling speed.
AbstractList With the rapid development of shale gas in northeastern Sichuan province, problems such as low drilling rate, long drilling cycle and serious bit wear are becoming more and more prominent in shale gas drilling process. This paper proposes new prediction theory with two steps based on logging data sensitive to lithology by introducing Bayesian classifier and Self Adaptive Double Chain Quantum Genetic Algorithm (S-DC-QGA) which could optimize BP neural network prediction model. In the first step, the Bayesian network classifier achieved the classification and recognition of lithology, improved the correlation of model sample data, and enhanced the accuracy and speed of lithology classification. In the second step, S-DC-QGA characterized as the global optimization is used to optimize the number of hidden layer nodes, weights and thresholds of the BP neural network. Results showed that Bayesian lithologies classification enhanced the correlation of samples, moreover optimized BP neural network solved overfitting, random initial weights of BP itself and oscillation of fitting and generalization ability with slight change of network parameters, improving the prediction accuracy of rock drillability parameters and the generalization ability of the model. The findings of this study can help for better drilling design and improvement of mechanical drilling speed.
Author Feng, Hong
Fang, Xinxin
Wang, Hao
Author_xml – sequence: 1
  givenname: Xinxin
  orcidid: 0000-0001-8654-708X
  surname: Fang
  fullname: Fang, Xinxin
  organization: China Coal Technology & Engineering Group Xian Institute
– sequence: 2
  givenname: Hong
  surname: Feng
  fullname: Feng, Hong
  organization: China Coal Technology & Engineering Group Xian Institute
– sequence: 3
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: Research Institute of Petroleum Exploration & Development
BookMark eNqFkE1rVDEUhoNUsK3-BCHg-tbk5uPm4kZbbBUKCq3rcCYfbdpMMiYZ5PYH-Lub6dSNC93khMP7vCHPETpIOTmE3lJyQoki7ymZqeRSnoxkHPvB5CTmF-iQCjYOIxfzQb_3zLALvUJHtd4RQueJykP0-6pt7YJzwiE1F2O4canhTXE2mBb6eu3abbY4e1yyuce2hBhhFWJoC15BdXbHnsLiaoCE-_o2x3yzYBOh1uCDgacaSD24aWEdHjpy-h0nty0Q-2i_crl_jV56iNW9eZ7H6Mf55-uzL8Plt4uvZ58uB8OYaoOnhEszeq84Z8An54QCLpgbPQfrCPV88pSKyXQh1CrF5UicXSkPjgg1s2P0bt-7Kfnn1tWm7_K2pP6kHqViZJJKip76sE-ZkmstzmsT2tM_WoEQNSV6J17_Ea934vWz-E6Lv-hNCWsoy3-5j3suJJ_LGrqXaHWDJebiCyQTqmb_rngE0r-enQ
CitedBy_id crossref_primary_10_1007_s10706_023_02663_7
crossref_primary_10_1080_10916466_2024_2385727
crossref_primary_10_1007_s13369_023_07819_4
crossref_primary_10_1038_s41598_024_75639_z
crossref_primary_10_1038_s41598_025_04034_z
crossref_primary_10_1016_j_geoen_2024_213268
crossref_primary_10_3389_feart_2022_961311
crossref_primary_10_1007_s13202_023_01684_5
crossref_primary_10_1016_j_geoen_2023_212556
Cites_doi 10.1016/j.petrol.2014.08.026
10.1016/j.petrol.2014.05.023
10.1007/s10706-015-9970-9
10.1016/0893-6080(89)90003-8
10.1016/j.fuel.2013.10.010
10.1109/TEVC.2008.2003010
10.1016/j.physa.2019.03.118
10.1016/0893-6080(89)90020-8
10.1016/j.asoc.2017.07.046
10.1007/s13202-011-0013-7
10.1016/j.powtec.2020.05.059
10.1093/ijlct/ctu034
10.1080/15567036.2010.493925
10.1007/s42452-020-2993-8
10.1007/s10973-020-09458-5
10.1016/j.molliq.2018.12.055
10.1007/s10706-004-7547-0
10.1016/j.fuel.2012.05.050
10.1016/j.fuel.2014.01.073
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
2022 Taylor & Francis Group, LLC
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
– notice: 2022 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
8FD
FR3
KR7
DOI 10.1080/10916466.2022.2036759
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1532-2459
EndPage 2162
ExternalDocumentID 10_1080_10916466_2022_2036759
2036759
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
123
29O
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~02
~S~
AAYXX
CITATION
8FD
ADYSH
FR3
KR7
ID FETCH-LOGICAL-c338t-f1046c2ff8443a47ee58a453e2f4ade01f47f1157c1641d884620edb8fae05893
IEDL.DBID TFW
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000754944900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6466
IngestDate Sat Jul 26 03:07:42 EDT 2025
Sat Nov 29 06:43:23 EST 2025
Tue Nov 18 21:39:55 EST 2025
Mon Oct 20 23:49:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-f1046c2ff8443a47ee58a453e2f4ade01f47f1157c1641d884620edb8fae05893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8654-708X
PQID 2683076865
PQPubID 2045233
PageCount 22
ParticipantIDs crossref_citationtrail_10_1080_10916466_2022_2036759
crossref_primary_10_1080_10916466_2022_2036759
proquest_journals_2683076865
informaworld_taylorfrancis_310_1080_10916466_2022_2036759
PublicationCentury 2000
PublicationDate 2022-05-12
PublicationDateYYYYMMDD 2022-05-12
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-12
  day: 12
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Petroleum science and technology
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
Vo Thanh H. (e_1_3_2_32_1) 2019; 2
Tang S. H. (e_1_3_2_31_1) 2010; 28
e_1_3_2_24_1
e_1_3_2_25_1
Li Z. (e_1_3_2_18_1) 2018; 18
Liang Q. M. (e_1_3_2_20_1) 2006; 34
e_1_3_2_26_1
Li S. (e_1_3_2_16_1) 2017; 53
Dong Q. Q. (e_1_3_2_11_1) 2012; 39
Li S. B. (e_1_3_2_17_1) 2007; 35
e_1_3_2_9_1
Liu X. J. (e_1_3_2_21_1) 2005; 25
e_1_3_2_8_1
e_1_3_2_7_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_6_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
Lu X. W. (e_1_3_2_22_1) 1999; 20
Zhang H. (e_1_3_2_35_1) 2005; 24
Liang C. Y. (e_1_3_2_19_1) 2012; 29
Ma Y. (e_1_3_2_23_1) 2018; 54
Fan X. L. (e_1_3_2_12_1) 1999; 23
Xia H. Q. (e_1_3_2_33_1) 2004; 28
References_xml – volume: 20
  start-page: 84
  year: 1999
  ident: e_1_3_2_22_1
  article-title: Lithology identification method based on feedforward neural network
  publication-title: Oil and Gas Geology
– ident: e_1_3_2_5_1
  doi: 10.1016/j.petrol.2014.08.026
– volume: 29
  start-page: 2401
  year: 2012
  ident: e_1_3_2_19_1
  article-title: Research progress of quantum genetic algorithm
  publication-title: Application Research of Computers
– volume: 34
  start-page: 17
  year: 2006
  ident: e_1_3_2_20_1
  article-title: Experimental study on the use of logging data to predict rock drillability
  publication-title: Petroleum Drilling Technology
– ident: e_1_3_2_8_1
  doi: 10.1016/j.petrol.2014.05.023
– ident: e_1_3_2_15_1
  doi: 10.1007/s10706-015-9970-9
– ident: e_1_3_2_13_1
  doi: 10.1016/0893-6080(89)90003-8
– ident: e_1_3_2_6_1
  doi: 10.1016/j.fuel.2013.10.010
– ident: e_1_3_2_24_1
  doi: 10.1109/TEVC.2008.2003010
– ident: e_1_3_2_26_1
  doi: 10.1016/j.physa.2019.03.118
– volume: 24
  start-page: 112
  year: 2005
  ident: e_1_3_2_35_1
  article-title: Study on pre-drilling prediction method of rock drillability in Yemaojing
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– ident: e_1_3_2_14_1
  doi: 10.1016/0893-6080(89)90020-8
– ident: e_1_3_2_30_1
  doi: 10.1016/j.asoc.2017.07.046
– volume: 35
  start-page: 9
  year: 2007
  ident: e_1_3_2_17_1
  article-title: A new method for optimization of drilling parameters
  publication-title: Petroleum Drilling Technology
– ident: e_1_3_2_3_1
  doi: 10.1007/s13202-011-0013-7
– volume: 28
  start-page: 148
  year: 2004
  ident: e_1_3_2_33_1
  article-title: Research on rock drillability logging calculation based on BP neural network
  publication-title: Well Logging Technology
– volume: 18
  start-page: 58
  year: 2018
  ident: e_1_3_2_18_1
  article-title: Experimental analysis of rock drillability of the second member of Xujiahe Formation in western Sichuan
  publication-title: Science Technology and Engineering
– ident: e_1_3_2_29_1
  doi: 10.1016/j.powtec.2020.05.059
– volume: 2
  start-page: 1
  year: 2019
  ident: e_1_3_2_32_1
  article-title: Impact of a new geological modelling method on the enhancement of the CO2 storage assessment of E sequence of Nam Vang field, offshore Vietnam
  publication-title: Energy Source
– ident: e_1_3_2_4_1
  doi: 10.1093/ijlct/ctu034
– volume: 39
  start-page: 26
  year: 2012
  ident: e_1_3_2_11_1
  article-title: A model for predicting formation drillability based on optimized BP neural network
  publication-title: Prospecting Engineering
– ident: e_1_3_2_10_1
  doi: 10.1080/15567036.2010.493925
– volume: 23
  start-page: 50
  year: 1999
  ident: e_1_3_2_12_1
  article-title: Application of neural network in lithology recognition
  publication-title: Logging Technology
– ident: e_1_3_2_2_1
  doi: 10.1007/s42452-020-2993-8
– ident: e_1_3_2_25_1
  doi: 10.1007/s10973-020-09458-5
– ident: e_1_3_2_27_1
  doi: 10.1016/j.molliq.2018.12.055
– ident: e_1_3_2_34_1
– volume: 25
  start-page: 69
  year: 2005
  ident: e_1_3_2_21_1
  article-title: Research on the use of logging data to evaluate rock drillability
  publication-title: Natural Gas Industry
– volume: 28
  start-page: 113
  year: 2010
  ident: e_1_3_2_31_1
  article-title: Study on drilling methods to improve rock drillability in western Sichuan
  publication-title: Xinjiang Geology
– ident: e_1_3_2_28_1
  doi: 10.1007/s10706-004-7547-0
– ident: e_1_3_2_9_1
  doi: 10.1016/j.fuel.2012.05.050
– volume: 54
  start-page: 99
  year: 2018
  ident: e_1_3_2_23_1
  article-title: Research on a new adaptive quantum genetic algorithm
  publication-title: Computer Engineering and Applications
– ident: e_1_3_2_7_1
  doi: 10.1016/j.fuel.2014.01.073
– volume: 53
  start-page: 54
  year: 2017
  ident: e_1_3_2_16_1
  article-title: Quantum genetic algorithm and application based on universal quantum gate
  publication-title: Computer Engineering and Applications
SSID ssj0019716
Score 2.3264358
Snippet With the rapid development of shale gas in northeastern Sichuan province, problems such as low drilling rate, long drilling cycle and serious bit wear are...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2141
SubjectTerms Back propagation networks
Bayesian
Bayesian analysis
BP neural network
Classification
Classifiers
Data logging
Drilling
genetic algorithm
Genetic algorithms
Global optimization
Lithology
lithology classification
Mathematical models
Neural networks
Parameters
Prediction models
rock drillability
Shale gas
Title Study on intelligent prediction method of rock drillability based on Bayesian lithology classification and optimized BP neural network
URI https://www.tandfonline.com/doi/abs/10.1080/10916466.2022.2036759
https://www.proquest.com/docview/2683076865
Volume 40
WOSCitedRecordID wos000754944900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1532-2459
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019716
  issn: 1091-6466
  databaseCode: TFW
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD34hCQR5YDU3sOO5IERUDqjoU6BY5ji1VQFolASn8AH43PiepWiHUAcZEOsuxz3fn3Lt3CF0GBljZJCe-l0jCZEyJDIwm2uPGsND6PNfO5-khHA7FZNIb1WjCvIZVwh3aVEQRzlbD4ZZx3iDiroHLkjMOAAMfaqmoDXqhhM-6fjia48HzIo8ABEku39nzCIg0NTy_jbLinVa4S3_YaueABrv_MPU9tFNHn_imUpd9tKHTA7S9xEl4iL4AWVjiWYqnC7bOAs8zSOjAJuKq5zSeGWx93wtOMuhb5CC2JQafmIBsX5YayjOxfe3sa4kVxOkATHK6gO0n4Jm1V2_TTyvSH2Fg1rRzSytc-hF6HNyNb-9J3ayBKHvLLYiBZLHyjRGMUclCrQMhWUC1b5hMdNezO2-A2UfZBfASYeMev6uTWBipobUhPUatdJbqE4S11ixRmoaK-SwUQcyFUDwOAxXG1F6B2og1mxSpmskcGmq8Rl5NeNoscwTLHNXL3EZXC7F5ReWxTqC3rAFR4f6hmKrhSUTXyHYadYlqq5BHPhcUMp88OP3D0GdoCx4BwuD5HdQqsnd9jjbVRzHNswun_99_pQJH
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAEH3ojBgBy4FtYmbbMjQ0xDjInDgN2iNE2kCWinrSCNH8DvJk7baRNCO8C1laPUcfyo7c8InfsaUNlE4HhuLBwqIuIIXytHuYHWNDQ2z47zeeqE3S7r9xuzvTBQVgkxtM6BIqyuhssNP6PLkrhLALMMaAAVBh40UxHj9TaW0QpMp4MArNd6nmYSACLJZjwbrgM0ZRfPb8vM2ac59NIf2tqaoNbWf2x-G20WDii-yiVmBy2pZBdtzMAS7qEvKC6c4DTBgylgZ4aHI8jpwDnifOw0TjU25u8FxyMYXWSrbCcYzGIMtE0xUdChic1jq2InWIKrDrVJVhyw-QacGpX1Nvg0JM0HDOCaZm9JXpq-jx5bN73rtlPMa3CkCXQzR0O-WHpaM0qJoKFSPhPUJ8rTVMSq7prD1wDuIw0D3JgZ18erqzhiWiiYbkgOUCVJE3WIsFKKxlKRUFKPhsyPAsZkEIW-DCNioqAqouUpcVmAmcNMjVfuFpinJZs5sJkXbK6iiynZMEfzWETQmBUBntnfKDqfecLJAtpaKS-8UAxj7gWMQPIz8I_-sPQZWmv37ju8c9u9O0br8AoqGlyvhirZ6F2doFX5kQ3Go1N7Gb4B3cEGcw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8MwDI1gIAQHvhGDATlwLaxN2mZHBkwgpmmHAbtFaZpIE9BOW0EaP4DfTZy20yaEdoBrK0ep49hO_fKM0LmvgZVNBI7nxsKhIiKO8LVylBtoTUMT82w7n6d22Omwfr_RLdCE4wJWCWdonRNFWF8Nm3sY6xIRdwlclgENAGDgwV0qYpLexjJaMamzD4bdaz1PCwnAkGQLng3XAZnyEs9vw8yFpzny0h_O2kag1tY_zH0bbRbpJ77K7WUHLalkF23MkBLuoS-AFk5wmuDBlK4zw8MRVHRgFXHedBqnGpvg94LjETQushjbCYagGINsU0wU3M_E5rF1sBMsIVEHZJI1Bmw-AafGYb0NPo1Is4uBWtPMLcmB6fvosXXbu75zim4NjjTH3MzRUC2WntaMUiJoqJTPBPWJ8jQVsaq7Zuk1UPtIowA3Zibx8eoqjpgWCnobkgNUSdJEHSKslKKxVCSU1KMh86OAMRlEoS_DiJgzUBXRcpG4LKjMoaPGK3cLxtNSzRzUzAs1V9HFVGyYc3ksEmjMWgDP7E8UnXc84WSBbK00F164hTH3Akag9Bn4R38Y-gytdW9avH3feThG6_AG4AyuV0OVbPSuTtCq_MgG49Gp3QrfvnMFJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+intelligent+prediction+method+of+rock+drillability+based+on+Bayesian+lithology+classification+and+optimized+BP+neural+network&rft.jtitle=Petroleum+science+and+technology&rft.au=Fang%2C+Xinxin&rft.au=Feng%2C+Hong&rft.au=Wang%2C+Hao&rft.date=2022-05-12&rft.issn=1091-6466&rft.eissn=1532-2459&rft.volume=40&rft.issue=17&rft.spage=2141&rft.epage=2162&rft_id=info:doi/10.1080%2F10916466.2022.2036759&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10916466_2022_2036759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6466&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6466&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6466&client=summon