Some inequalities for operator (p, h)-convex functions
Let p be a positive number and h a function on satisfying for any . A non-negative continuous function f on is said to be operator (p, h)-convex if holds for all positive semidefinite matrices A, B of order n with spectra in K, and for any . In this paper, we study properties of operator (p, h)-conv...
Uloženo v:
| Vydáno v: | Linear & multilinear algebra Ročník 66; číslo 3; s. 580 - 592 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
04.03.2018
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0308-1087, 1563-5139 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let p be a positive number and h a function on
satisfying
for any
. A non-negative continuous function f on
is said to be operator (p, h)-convex if
holds for all positive semidefinite matrices A, B of order n with spectra in K, and for any
. In this paper, we study properties of operator (p, h)-convex functions and prove the Jensen, Hansen-Pedersen type inequalities for them. We also give some equivalent conditions for a function to become an operator (p, h)-convex. In applications, we obtain Choi-Davis-Jensen type inequality for operator (p, h)-convex functions and a relation between operator (p, h)-convex functions with operator monotone functions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0308-1087 1563-5139 |
| DOI: | 10.1080/03081087.2017.1307914 |