A fast implicit difference scheme for solving high-dimensional time-space fractional nonlinear Schrödinger equation

In this work, an efficient implicit difference scheme is developed for solving the high-dimensional time-space fractional nonlinear Schrödinger equation. The derived scheme is constructed by utilizing a fast evaluation of Caputo fractional derivative based on the - formula; meanwhile, the compact fi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computer mathematics Ročník 100; číslo 7; s. 1419 - 1438
Hlavný autor: Mustafa, Almushaira
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 03.07.2023
Taylor & Francis Ltd
Predmet:
ISSN:0020-7160, 1029-0265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this work, an efficient implicit difference scheme is developed for solving the high-dimensional time-space fractional nonlinear Schrödinger equation. The derived scheme is constructed by utilizing a fast evaluation of Caputo fractional derivative based on the - formula; meanwhile, the compact finite difference with matrix transfer technique is adopted for the spatial discretization. Moreover, a linearized iteration method based on the fast discrete sine transform technique is considered to solve the nonlinear system effectively. Because the resultant algorithm does not use matrix inversion, it is computationally efficient in long-time calculations. The stability, truncation error and convergence analysis of the discrete scheme are discussed in detail. Furthermore, a fast iterative algorithm is provided. Finally, several numerical examples are given to verify the efficiency and accuracy of the derived scheme, and a comparison with similar work is presented.
AbstractList In this work, an efficient implicit difference scheme is developed for solving the high-dimensional time-space fractional nonlinear Schrödinger equation. The derived scheme is constructed by utilizing a fast evaluation of Caputo fractional derivative based on the - formula; meanwhile, the compact finite difference with matrix transfer technique is adopted for the spatial discretization. Moreover, a linearized iteration method based on the fast discrete sine transform technique is considered to solve the nonlinear system effectively. Because the resultant algorithm does not use matrix inversion, it is computationally efficient in long-time calculations. The stability, truncation error and convergence analysis of the discrete scheme are discussed in detail. Furthermore, a fast iterative algorithm is provided. Finally, several numerical examples are given to verify the efficiency and accuracy of the derived scheme, and a comparison with similar work is presented.
In this work, an efficient implicit difference scheme is developed for solving the high-dimensional time-space fractional nonlinear Schrödinger equation. The derived scheme is constructed by utilizing a fast evaluation of Caputo fractional derivative based on the - formula; meanwhile, the compact finite difference with matrix transfer technique is adopted for the spatial discretization. Moreover, a linearized iteration method based on the fast discrete sine transform technique is considered to solve the nonlinear system effectively. Because the resultant algorithm does not use matrix inversion, it is computationally efficient in long-time calculations. The stability, truncation error and convergence analysis of the discrete scheme are discussed in detail. Furthermore, a fast iterative algorithm is provided. Finally, several numerical examples are given to verify the efficiency and accuracy of the derived scheme, and a comparison with similar work is presented.
Author Mustafa, Almushaira
Author_xml – sequence: 1
  givenname: Almushaira
  surname: Mustafa
  fullname: Mustafa, Almushaira
  email: mstf1985@uestc.edu.cn
  organization: School of Mathematical Sciences/Institute of Computational Science, University of Electronic Science and Technology of China
BookMark eNqFkM-KFDEQh4Os4OzqIwgBzz1W0j3pBC8ui_9gwYN6DmW6spOlO5lNMsq-mC_gi5l21osHPVVRfL-i6jtnZzFFYuy5gK0ADS8BJIxCwVaC7LdSGBikfMQ2AqTpQKrdGdusTLdCT9h5KbcAoM2oNqxeco-l8rAc5uBC5VPwnjJFR7y4PS3Efcq8pPlbiDd8H2723RQWiiWkiDOvre_KARvuM7p6mrYD5xAJM__k9vnnj6llKXO6O-JKPGWPPc6Fnj3UC_bl7ZvPV--764_vPlxdXneu73XtCCUgaDVKr5xqrTLGo1P9ZIT_OnpBRnlyOOKwG41BOWg5aSU0SS0Emv6CvTjtPeR0d6RS7W065nZgsVJL0MOgd0OjdifK5VRKJm8POSyY760Auwq2fwTbVbB9ENxyr_7KNX-__6sZw_zf9OtTOsQmeMHvKc-TrXg_p9xMRheK7f-94hffiZf1
CitedBy_id crossref_primary_10_1016_j_cnsns_2024_107839
Cites_doi 10.1016/j.matcom.2020.11.001
10.1016/j.aml.2018.06.028
10.1137/16M1105700
10.1016/S0375-9601(00)00201-2
10.1016/j.jcp.2020.109869
10.1080/10236198.2021.2012568
10.1016/j.cma.2008.11.011
10.1007/s11075-016-0160-5
10.1063/1.1769611
10.1016/j.cam.2019.01.045
10.1090/S0025-5718-2012-02617-2
10.1080/00207160.2014.945440
10.1016/j.camwa.2011.12.028
10.1063/1.1050284
10.4208/jms.v54n4.21.06
10.1016/j.jcp.2014.03.037
10.4208/cicp.300414.120215a
10.1007/s11075-017-0439-1
10.1016/j.camwa.2012.07.004
10.1016/j.apnum.2020.03.004
10.1137/17M1131829
10.1137/110830800
10.1016/j.finel.2012.03.008
10.1063/1.2716203
10.4208/cicp.OA-2017-0019
10.1137/140961560
10.1515/fca-2017-0002
10.1016/j.jcp.2017.12.044
10.1090/S0025-5718-2015-02937-8
10.1155/2013/290216
10.1016/j.apnum.2019.07.006
10.4208/eajam.010418.020718
10.1016/j.jmaa.2008.03.061
10.1016/j.amc.2021.126734
10.4208/cicp.OA-2016-0136
10.1137/1.9781611970999
10.1016/j.jcp.2013.02.037
10.1137/100800634
10.1103/PhysRevE.62.3135
10.1186/s13662-019-2435-3
10.1007/s42985-020-00048-6
10.1103/PhysRevE.66.056108
10.2478/s13540-013-0014-y
10.1016/j.jcp.2019.109009
10.1137/140971191
10.1002/num.22423
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00207160.2023.2190422
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1029-0265
EndPage 1438
ExternalDocumentID 10_1080_00207160_2023_2190422
2190422
Genre Research Article
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AI.
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MK~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-ea20a08672f6c60a0699fac63d91fb7f1e96feca7a45799a2482d8618e2811a93
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000959685800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7160
IngestDate Wed Aug 13 05:03:27 EDT 2025
Tue Nov 18 21:27:09 EST 2025
Sat Nov 29 02:21:41 EST 2025
Mon Oct 20 23:45:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-ea20a08672f6c60a0699fac63d91fb7f1e96feca7a45799a2482d8618e2811a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2820844854
PQPubID 52924
PageCount 20
ParticipantIDs crossref_primary_10_1080_00207160_2023_2190422
proquest_journals_2820844854
informaworld_taylorfrancis_310_1080_00207160_2023_2190422
crossref_citationtrail_10_1080_00207160_2023_2190422
PublicationCentury 2000
PublicationDate 2023-07-03
PublicationDateYYYYMMDD 2023-07-03
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of computer mathematics
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_50_1
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_40_1
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
Ilic M. (e_1_3_3_20_1) 2006; 9
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_30_1
e_1_3_3_51_1
e_1_3_3_17_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_34_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_41_1
Ilic M. (e_1_3_3_19_1) 2005; 8
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_2_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_4_1
  doi: 10.1016/j.matcom.2020.11.001
– ident: e_1_3_3_15_1
  doi: 10.1016/j.aml.2018.06.028
– ident: e_1_3_3_27_1
  doi: 10.1137/16M1105700
– ident: e_1_3_3_39_1
– ident: e_1_3_3_25_1
  doi: 10.1016/S0375-9601(00)00201-2
– ident: e_1_3_3_49_1
  doi: 10.1016/j.jcp.2020.109869
– ident: e_1_3_3_3_1
  doi: 10.1080/10236198.2021.2012568
– volume: 8
  start-page: 323
  issue: 3
  year: 2005
  ident: e_1_3_3_19_1
  article-title: Numerical approximation of a fractional-in-space diffusion equation, i
  publication-title: Fract. Calc. Appl. Anal.
– volume: 9
  start-page: 333
  issue: 4
  year: 2006
  ident: e_1_3_3_20_1
  article-title: Numerical approximation of a fractional-in-space diffusion equation (II) – with nonhomogeneous boundary conditions
  publication-title: Fract. Calc. Appl. Anal.
– ident: e_1_3_3_46_1
  doi: 10.1016/j.cma.2008.11.011
– ident: e_1_3_3_29_1
  doi: 10.1007/s11075-016-0160-5
– ident: e_1_3_3_35_1
  doi: 10.1063/1.1769611
– ident: e_1_3_3_37_1
  doi: 10.1016/j.cam.2019.01.045
– ident: e_1_3_3_9_1
  doi: 10.1090/S0025-5718-2012-02617-2
– ident: e_1_3_3_34_1
  doi: 10.1080/00207160.2014.945440
– ident: e_1_3_3_12_1
  doi: 10.1016/j.camwa.2011.12.028
– ident: e_1_3_3_23_1
  doi: 10.1063/1.1050284
– ident: e_1_3_3_36_1
– ident: e_1_3_3_6_1
  doi: 10.4208/jms.v54n4.21.06
– ident: e_1_3_3_42_1
  doi: 10.1016/j.jcp.2014.03.037
– ident: e_1_3_3_14_1
  doi: 10.4208/cicp.300414.120215a
– ident: e_1_3_3_50_1
  doi: 10.1007/s11075-017-0439-1
– ident: e_1_3_3_45_1
  doi: 10.1016/j.camwa.2012.07.004
– ident: e_1_3_3_16_1
  doi: 10.1016/j.apnum.2020.03.004
– ident: e_1_3_3_32_1
  doi: 10.1137/17M1131829
– ident: e_1_3_3_8_1
  doi: 10.1137/110830800
– ident: e_1_3_3_44_1
  doi: 10.1016/j.finel.2012.03.008
– ident: e_1_3_3_43_1
  doi: 10.1063/1.2716203
– ident: e_1_3_3_47_1
  doi: 10.4208/cicp.OA-2017-0019
– ident: e_1_3_3_51_1
  doi: 10.1137/140961560
– ident: e_1_3_3_22_1
  doi: 10.1515/fca-2017-0002
– ident: e_1_3_3_28_1
  doi: 10.1016/j.jcp.2017.12.044
– ident: e_1_3_3_10_1
  doi: 10.1090/S0025-5718-2015-02937-8
– ident: e_1_3_3_2_1
  doi: 10.1155/2013/290216
– ident: e_1_3_3_7_1
  doi: 10.1016/j.apnum.2019.07.006
– ident: e_1_3_3_38_1
  doi: 10.4208/eajam.010418.020718
– ident: e_1_3_3_13_1
  doi: 10.1016/j.jmaa.2008.03.061
– ident: e_1_3_3_30_1
  doi: 10.1016/j.amc.2021.126734
– ident: e_1_3_3_21_1
  doi: 10.4208/cicp.OA-2016-0136
– ident: e_1_3_3_40_1
  doi: 10.1137/1.9781611970999
– ident: e_1_3_3_41_1
  doi: 10.1016/j.jcp.2013.02.037
– ident: e_1_3_3_48_1
  doi: 10.1137/100800634
– ident: e_1_3_3_24_1
  doi: 10.1103/PhysRevE.62.3135
– ident: e_1_3_3_11_1
  doi: 10.1186/s13662-019-2435-3
– ident: e_1_3_3_5_1
  doi: 10.1007/s42985-020-00048-6
– ident: e_1_3_3_26_1
  doi: 10.1103/PhysRevE.66.056108
– ident: e_1_3_3_18_1
  doi: 10.2478/s13540-013-0014-y
– ident: e_1_3_3_33_1
  doi: 10.1016/j.jcp.2019.109009
– ident: e_1_3_3_17_1
  doi: 10.1137/140971191
– ident: e_1_3_3_31_1
  doi: 10.1002/num.22423
SSID ssj0008976
Score 2.3183832
Snippet In this work, an efficient implicit difference scheme is developed for solving the high-dimensional time-space fractional nonlinear Schrödinger equation. The...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1419
SubjectTerms Error analysis
fast algorithm
Finite difference method
Iterative algorithms
Iterative methods
matrix transfer technique
Nonlinear systems
Schrodinger equation
stability
Stability analysis
Time-space fractional Schrödinger equation
Truncation errors
Title A fast implicit difference scheme for solving high-dimensional time-space fractional nonlinear Schrödinger equation
URI https://www.tandfonline.com/doi/abs/10.1080/00207160.2023.2190422
https://www.proquest.com/docview/2820844854
Volume 100
WOSCitedRecordID wos000959685800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: TFW
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwELYQoqDhfTqeckHr1Trx-lEixIoCIQpeXeTEY7HSHbrbBH4af4A_xoydrEAnRHF0SZRxLHtm7JmMv4-xYyMhqFqBkDIGoYzXokabEtpFb3TADW5K6N9emMtLe3_vrvpqwrYvq6QYOmagiOSrybh93Q4VcXSCGxdGPR4R9fcITY5wrNAL486eivqup3cLX2xdopcjCUEiwxmez1r5sDp9wC79x1enBWi6_g1d32Br_e6Tn2R12WRL8LjF1gdmB94b-jbrTnj0bcdnqd581vGBR6UBjuEw_AaOfeaot5SP4IR5LALxBGSMD06M9QJ9Fb4e5_noBD59zF329KGH-etLSClFDn8z3PgOu5meXZ-ei56fQTQY2HYCfDH2GBKZIupG46V2OMONLoOTsTZRgtMRGm-8mhjnfKFsEayWFgorpXflD7aMX4afjAOMHZg6KDWJ9KfW2bJuJkEFV0YHwe4yNcxL1fTg5cSh8auSC4zTPLIVjWzVj-wuGy3E_mT0jq8E3PtJr7qUNomZ46Qqv5A9GDSk6h1BW2FEO7YYAk_U3n80vc9W6TaVCZcHbLmbP8EhW2meu1k7P0oq_wa4-f0h
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIMGF8qroA-pDr16tE68fxwp11arLnra0N8uJx2IlqOhu4KfxB_hjnbGTVSuEeoBblGQcy54Zeyae72PsyEiIqlEgpExRKBO0aNCmhHYpGB1xg5sT-p9nZj63V1fubi0MHaukGDoVoIjsq8m4KRk9HImjEm5cGfV4RNzfI7Q5ArJ6zJ4QOx0FYIvp5cYbW5cJ5khEkMxQxfO3Zu6tT_fQS__w1nkJmm7_j86_ZC_6DSg_Lhrzij2C69dseyB34L2tv2HdMU9h3fFlPnK-7PhApdICx4gYvgHHTnNUXUpJcII9FpGoAgrMByfSeoHuCl9Pq1I9gXevS58DfejL6vevmLOKHG4K4vhbdjE9WXw8FT1Fg2gxtu0EhGocMCoyVdKtxkvtcJJbXUcnU2OSBKcTtMEENTHOhUrZKlotLVRWyuDqHbaFX4Z3jAOMHZgmKjVJ9LPW2bppJ1FFVycH0e4yNUyMb3v8cqLR-OrlBua0jKynkfX9yO6y0UbsewHweEjA3Z113-XMSSo0J75-QPZgUBHf-4K1x6B2bDEKnqi9f2j6kD07XXya-dnZ_HyfPadH-dRwfcC2utUPeM-etj-75Xr1Iev_La1uAVM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZKi1AvtPxUFErrA1ev1onjn2MFrEBUqx5a6M1y4rFYqa3Kbsqj8QK8GDN2sqJCqAe4RUnGseyZsWcy_j7G3hgJUbUKhJQpCmWCFi3alNAuBaMjbnBzQv_ziZnP7cWFOx2qCVdDWSXF0KkARWRfTcZ9E9NYEUcnuHFh1NMJUX9P0OQIx-oB28Ktc0OKfTb7snbG1mV-ORIRJDMe4vlbM3eWpzvgpX8467wCzXb-Q9932eNh-8mPi748YRtw_ZTtjNQOfLD0Z6w_5imser7IBeeLno9EKh1wjIfhCjj2maPiUkKCE-ixiEQUUEA-OFHWC3RW-HpalrMTePe6dDnQh74uf_6IOafI4VvBG3_Ozmfvz95-EANBg-gwsu0FhGoaMCYyVdKdxkvtcIo7XUcnU2uSBKcTdMEE1RjnQqVsFa2WFiorZXD1HtvEL8MLxgGmDkwblWoS_ap1tm67Jqro6uQg2n2mxnnx3YBeTiQal16uQU7LyHoaWT-M7D6brMVuCnzHfQLu90n3fc6bpEJy4ut7ZA9GDfGDJ1h5DGmnFmPgRr38h6aP2KPTdzN_8nH-6RXbpie5ZLg-YJv98hZes4fd936xWh5m7f8FoCIABQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+implicit+difference+scheme+for+solving+high-dimensional+time-space+fractional+nonlinear+Schr%C3%B6dinger+equation&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Almushaira+Mustafa&rft.date=2023-07-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=100&rft.issue=7&rft.spage=1419&rft.epage=1438&rft_id=info:doi/10.1080%2F00207160.2023.2190422&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon