Robust optimality conditions for multiobjective programming problems under data uncertainty and its applications

In this article, we employ advanced techniques of convex analysis and $ \mathcal {C} $ C -differentiation to examine KKT-type robust necessary and sufficient optimality conditions and robust duality for an uncertain multiobjective programming problem under uncertainty sets, where $ \mathcal {C} $ C...

Full description

Saved in:
Bibliographic Details
Published in:Optimization Vol. 73; no. 3; pp. 641 - 672
Main Authors: Nguyen, Thuy Thi Thu, Su, Tran Van, Linh, Dang Hong
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis 03.03.2024
Taylor & Francis LLC
Subjects:
ISSN:0233-1934, 1029-4945
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article, we employ advanced techniques of convex analysis and $ \mathcal {C} $ C -differentiation to examine KKT-type robust necessary and sufficient optimality conditions and robust duality for an uncertain multiobjective programming problem under uncertainty sets, where $ \mathcal {C} $ C denotes the set of all $ \mathcal {G} $ G -derivatives which are positively homogeneous and convex with respect to the second argument. We first provide the robust constraint qualification of the (RCQ) type via the $ \mathcal {C} $ C -derivatives of uncertain constraint functions. We second establish KKT-type robust necessary conditions for robust (weakly) efficient solutions via the subdifferentials of $ \mathcal {C} $ C -derivatives to such problems. We third propose two new kinds of generalized $ \mathcal {C} $ C -convex functions via the subdifferentials of $ \mathcal {C} $ C -derivatives involving max-functions. Under suitable assumptions on the generalized $ \mathcal {C} $ C -convexity, KKT-type robust necessary optimality conditions become robust sufficient optimality conditions. Furthermore, we formulate as some applications a dual multiobjective programming problem to the underlying programming and examine weak, strong, and converse duality theorems for the same. Some illustrative examples are also provided for our findings.
AbstractList In this article, we employ advanced techniques of convex analysis and C-differentiation to examine KKT-type robust necessary and sufficient optimality conditions and robust duality for an uncertain multiobjective programming problem under uncertainty sets, where C denotes the set of all G-derivatives which are positively homogeneous and convex with respect to the second argument. We first provide the robust constraint qualification of the (RCQ) type via the C-derivatives of uncertain constraint functions. We second establish KKT-type robust necessary conditions for robust (weakly) efficient solutions via the subdifferentials of C-derivatives to such problems. We third propose two new kinds of generalized C-convex functions via the subdifferentials of C-derivatives involving max-functions. Under suitable assumptions on the generalized C-convexity, KKT-type robust necessary optimality conditions become robust sufficient optimality conditions. Furthermore, we formulate as some applications a dual multiobjective programming problem to the underlying programming and examine weak, strong, and converse duality theorems for the same. Some illustrative examples are also provided for our findings.
In this article, we employ advanced techniques of convex analysis and $ \mathcal {C} $ C -differentiation to examine KKT-type robust necessary and sufficient optimality conditions and robust duality for an uncertain multiobjective programming problem under uncertainty sets, where $ \mathcal {C} $ C denotes the set of all $ \mathcal {G} $ G -derivatives which are positively homogeneous and convex with respect to the second argument. We first provide the robust constraint qualification of the (RCQ) type via the $ \mathcal {C} $ C -derivatives of uncertain constraint functions. We second establish KKT-type robust necessary conditions for robust (weakly) efficient solutions via the subdifferentials of $ \mathcal {C} $ C -derivatives to such problems. We third propose two new kinds of generalized $ \mathcal {C} $ C -convex functions via the subdifferentials of $ \mathcal {C} $ C -derivatives involving max-functions. Under suitable assumptions on the generalized $ \mathcal {C} $ C -convexity, KKT-type robust necessary optimality conditions become robust sufficient optimality conditions. Furthermore, we formulate as some applications a dual multiobjective programming problem to the underlying programming and examine weak, strong, and converse duality theorems for the same. Some illustrative examples are also provided for our findings.
Author Su, Tran Van
Linh, Dang Hong
Nguyen, Thuy Thi Thu
Author_xml – sequence: 1
  givenname: Thuy Thi Thu
  surname: Nguyen
  fullname: Nguyen, Thuy Thi Thu
  organization: School of Applied Mathematics and Informatics, Hanoi University of Science and Technology
– sequence: 2
  givenname: Tran Van
  surname: Su
  fullname: Su, Tran Van
  email: tvsu@ued.udn.vn, sutrantud@gmail.com
  organization: Department of Mathematics, The University of Danang - University of Science and Education
– sequence: 3
  givenname: Dang Hong
  surname: Linh
  fullname: Linh, Dang Hong
  organization: School of Applied Mathematics and Informatics, Hanoi University of Science and Technology
BookMark eNqFkE1r3DAQhkVIoJtNfkJB0LM3-vJ6RS4tIW0KgUJpzmKsj0WLLbmSnLD_vnI2vfSQnmYG3vedmecSnYcYLEIfKdlQsiM3hHFOJRcbRhjbMMpYR7sztKKEyUZI0Z6j1aJpFtEHdJnzgRBGt0ys0PQz9nMuOE7FjzD4csQ6BuOLjyFjFxMe56EO_cHq4p8tnlLcJxhHH_ZL3w92zHgOxiZsoEBttU0FfKhJEAz2JWOYpsFreM28QhcOhmyv3-oaPX29_3X30Dz--Pb97stjoznflcZ2zoGRO6MF4dK2hJiub1tpqYPtduvqW73jO0IJyBYYGGFc10kjoOdGyJ6v0adTbj3y92xzUYc4p1BXKk46xlohmKiq9qTSKeacrFNTqhzSUVGiFrjqL1y1wFVvcKvv9h-f9uX1wZLAD_91fz65faiER3iJaTCqwHGIySUI2tcj34_4A-0Xl9I
CitedBy_id crossref_primary_10_1007_s10957_025_02783_5
crossref_primary_10_1007_s12190_025_02584_z
Cites_doi 10.1007/s10957-018-1437-8
10.1016/j.na.2011.04.006
10.1007/s10957-009-9521-8
10.1016/j.ejor.2017.08.003
10.1007/s11590-006-0013-6
10.1007/0-387-28020-0
10.1016/j.ejor.2014.03.013
10.1080/02331934.2016.1195384
10.1287/moor.23.4.769
10.1007/s10957-014-0564-0
10.1016/j.na.2016.01.002
10.1007/3-540-31247-1
10.1515/9781400831050
10.1016/j.ejor.2017.04.012
10.1515/9781400873173
10.1080/02331934.2022.2038154
10.1007/s10898-009-9522-z
10.1007/s10957-009-9518-3
10.1007/978-3-662-02796-7
10.1007/s10957-011-9896-1
10.1016/j.ejor.2017.12.018
10.1137/100791841
10.1080/02331934.2020.1836636
10.4134/BKMS.2014.51.1.287
10.1007/s10957-019-01607-7
10.1016/j.ejor.2013.02.037
10.1007/978-3-642-54265-7
10.1016/j.ejor.2015.06.031
10.1137/19M1251461
10.1007/978-94-009-0369-2_1
10.1007/s00291-015-0418-7
10.1080/02331934.2013.769104
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2022.2122717
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 672
ExternalDocumentID 10_1080_02331934_2022_2122717
2122717
Genre Research Article
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-e7ffad98dc4039e500d7b559e1fa666f494bf38010a95a2ad4df779d4ab3d49b3
IEDL.DBID TFW
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000854253400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0233-1934
IngestDate Wed Aug 13 10:49:56 EDT 2025
Sat Nov 29 06:01:42 EST 2025
Tue Nov 18 20:51:17 EST 2025
Mon Oct 20 23:48:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-e7ffad98dc4039e500d7b559e1fa666f494bf38010a95a2ad4df779d4ab3d49b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3072254424
PQPubID 27961
PageCount 32
ParticipantIDs crossref_primary_10_1080_02331934_2022_2122717
crossref_citationtrail_10_1080_02331934_2022_2122717
proquest_journals_3072254424
informaworld_taylorfrancis_310_1080_02331934_2022_2122717
PublicationCentury 2000
PublicationDate 2024-03-03
PublicationDateYYYYMMDD 2024-03-03
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-03
  day: 03
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References e_1_3_3_30_1
Lee GM (e_1_3_3_17_1) 2015; 16
e_1_3_3_18_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_13_1
e_1_3_3_16_1
e_1_3_3_35_1
Aubin JP (e_1_3_3_5_1) 1990
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_32_1
Goberna MA (e_1_3_3_11_1) 1998
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_23_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_7_1
  doi: 10.1007/s10957-018-1437-8
– ident: e_1_3_3_14_1
  doi: 10.1016/j.na.2011.04.006
– ident: e_1_3_3_35_1
  doi: 10.1007/s10957-009-9521-8
– ident: e_1_3_3_10_1
  doi: 10.1016/j.ejor.2017.08.003
– ident: e_1_3_3_36_1
  doi: 10.1007/s11590-006-0013-6
– ident: e_1_3_3_31_1
  doi: 10.1007/0-387-28020-0
– ident: e_1_3_3_4_1
  doi: 10.1016/j.ejor.2014.03.013
– ident: e_1_3_3_20_1
  doi: 10.1080/02331934.2016.1195384
– volume: 16
  start-page: 2039
  year: 2015
  ident: e_1_3_3_17_1
  article-title: On nonsmooth optimality theorems for robust multiobjective optimization problems
  publication-title: J Nonlinear Convex Anal
– ident: e_1_3_3_24_1
  doi: 10.1287/moor.23.4.769
– volume-title: Linear semi-infinite optimization
  year: 1998
  ident: e_1_3_3_11_1
– ident: e_1_3_3_12_1
  doi: 10.1007/s10957-014-0564-0
– ident: e_1_3_3_16_1
  doi: 10.1016/j.na.2016.01.002
– ident: e_1_3_3_28_1
  doi: 10.1007/3-540-31247-1
– ident: e_1_3_3_23_1
  doi: 10.1515/9781400831050
– ident: e_1_3_3_29_1
  doi: 10.1016/j.ejor.2017.04.012
– ident: e_1_3_3_30_1
  doi: 10.1515/9781400873173
– ident: e_1_3_3_8_1
  doi: 10.1080/02331934.2022.2038154
– ident: e_1_3_3_26_1
  doi: 10.1007/s10898-009-9522-z
– ident: e_1_3_3_34_1
  doi: 10.1007/s10957-009-9518-3
– ident: e_1_3_3_6_1
  doi: 10.1007/978-3-662-02796-7
– ident: e_1_3_3_27_1
  doi: 10.1007/s10957-011-9896-1
– ident: e_1_3_3_21_1
  doi: 10.1016/j.ejor.2017.12.018
– ident: e_1_3_3_13_1
  doi: 10.1137/100791841
– ident: e_1_3_3_3_1
  doi: 10.1080/02331934.2020.1836636
– volume-title: Set-Valued analysis
  year: 1990
  ident: e_1_3_3_5_1
– ident: e_1_3_3_18_1
  doi: 10.4134/BKMS.2014.51.1.287
– ident: e_1_3_3_33_1
  doi: 10.1007/s10957-019-01607-7
– ident: e_1_3_3_19_1
  doi: 10.1016/j.ejor.2013.02.037
– ident: e_1_3_3_2_1
  doi: 10.1007/978-3-642-54265-7
– ident: e_1_3_3_22_1
  doi: 10.1016/j.ejor.2015.06.031
– ident: e_1_3_3_15_1
  doi: 10.1137/19M1251461
– ident: e_1_3_3_32_1
  doi: 10.1007/978-94-009-0369-2_1
– ident: e_1_3_3_25_1
  doi: 10.1007/s00291-015-0418-7
– ident: e_1_3_3_9_1
  doi: 10.1080/02331934.2013.769104
SSID ssj0021624
Score 2.342157
Snippet In this article, we employ advanced techniques of convex analysis and $ \mathcal {C} $ C -differentiation to examine KKT-type robust necessary and sufficient...
In this article, we employ advanced techniques of convex analysis and C-differentiation to examine KKT-type robust necessary and sufficient optimality...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 641
SubjectTerms Convex analysis
Convexity
Derivatives
duality theorems
KKT-type robust optimality conditions
mathcal {C}
Mathematical programming
Multiobjective programming problem with uncertain data
Multiple objective analysis
Robustness (mathematics)
Uncertainty
uncertainty sets
Title Robust optimality conditions for multiobjective programming problems under data uncertainty and its applications
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2022.2122717
https://www.proquest.com/docview/3072254424
Volume 73
WOSCitedRecordID wos000854253400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1029-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: TFW
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0ShIA-sKU7ixvGIEBUDqhAq0C3yUyqiDzUpv5-z41StEGKALR4-y7LPdz7n83cIXRND4lxlJlJZbiPqrqy4FHlEDBw3ZJIx45WYXh_ZYJCPRvwpsAnLQKt0ObSthSK8r3abW8iyYcTdQJgBw0ndjUiSdMH3JpCTgBeG0O-25rD_tkq54syXtXWIyEGaNzw_9bIRnTa0S7_5ah-A-vv_MPQDtBdOn_i2NpdDtGWmR2h3TZPwGM2fZ3JZVngGvmTiD-kYUmZdM7swjBR7DuJMvteuEgeG1wTQOJSnKbF7mrbAjn4Kn6qmHUBPMG48rkq8_tv8BL3074d3D1EoyxApyGeryDBrhea5VpSk3PQI0UxCYmJiKyAZspRTaVOIfETwnkiEptoyxjUVMtWUy_QUtaazqTlDGMw4ZirvERoLKrkSiuWCayWITInusTaizXIUKmiWu9IZH0XcSJuGCS3chBZhQtuou4LNa9GO3wB8fa2Lyt-W2Lq0SZH-gu00hlGE_Q8QwhIn_pbQ8z90fYF2oEk95S3toFa1WJpLtK0-q3G5uPKW_gXgbvtL
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA66CurBt7g-c_BaTdu0aY4iLorrHmR93EqeoOiubKu_30naLhWRPeitUL4QkulMZvrlG4ROiCFhplITqDSzAXUlKy5FFhADxw0Zpcx4JaaHPhsMsqcn3r4L42iVLoe2lVCE99Xu43bF6IYSdwZxBiwndiWRKDoF5xtBUjKPFhKItU4_f9h7nCZdYeob2zpI4DDNLZ7fhvkWn76pl_7w1j4E9db-Y_LraLU-gOLzymI20JwZbaKVlizhFnq_G8uPosRjcCdv_pyOIWvWFbkLw1SxpyGO5UvlLXFN8noDNK471BTY3U6bYMdAhUdVMQ9gJJg4fi4L3P5zvo3ue5fDi6ug7swQKEhpy8Awa4XmmVaUxNwkhGgmITcxoRWQD1nKqbQxBD8ieCIioam2jHFNhYw15TLeQZ3ReGR2EQZLDpnKEkJDQSVXQrFMcK0EkTHRCesi2uxHrmrZctc94zUPG3XTekFzt6B5vaBddDqFvVe6HbMAvL3ZeekLJrbqbpLHM7AHjWXktQsACGGR03-L6N4fhj5GS1fD237evx7c7KNleEU9Ay4-QJ1y8mEO0aL6LJ-LyZE3-y_Idf91
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA5uiB7cxd0cvFbTNtM0R1EHRRlERp1byQqKzgzT6u_3JU1lBpE56K1QvhCS17ekX76H0AkxJM5VZiKV5Tai7siKS5FHxEC6IZOMGa_E9HTHOp281-P3gU1YBlqlq6FtLRThfbX7uIfaNoy4MwgzYDipOxFJklPwvQnUJLNoHlLnzBl5t_38XXPFme9r6yCRwzSXeH4bZiI8TYiX_nDWPgK1V_9h7mtoJaSf-Ly2l3U0Y_obaHlMlHATDR8G8qOs8ACcybvP0jHUzLqmdmGYKfYkxIF8rX0lDhSvd0Dj0J-mxO5u2gg7_ik8qpp3ACPBvPFLVeLx_-Zb6LF91b24jkJfhkhBQVtFhlkrNM-1oiTlpkWIZhIqExNbATtgKafSphD6iOAtkQhNtWWMaypkqimX6Taa6w_6ZgdhsOOYqbxFaCyo5EoolguulSAyJbrFdhFttqNQQbTc9c54K-JG2zQsaOEWtAgLuotOv2HDWrVjGoCP73VR-eMSW_c2KdIp2IPGMIrgAABCWOLU3xK694ehj9Hi_WW7uLvp3O6jJXhDPf0tPUBz1ejDHKIF9Vm9lKMjb_Rfxcv-Jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+optimality+conditions+for+multiobjective+programming+problems+under+data+uncertainty+and+its+applications&rft.jtitle=Optimization&rft.au=Thuy+Thi+Thu+Nguyen&rft.au=Tran+Van+Su&rft.au=Dang%2C+Hong+Linh&rft.date=2024-03-03&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=73&rft.issue=3&rft.spage=641&rft.epage=672&rft_id=info:doi/10.1080%2F02331934.2022.2122717&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon