Robust optimality conditions for multiobjective programming problems under data uncertainty and its applications
In this article, we employ advanced techniques of convex analysis and $ \mathcal {C} $ C -differentiation to examine KKT-type robust necessary and sufficient optimality conditions and robust duality for an uncertain multiobjective programming problem under uncertainty sets, where $ \mathcal {C} $ C...
Uloženo v:
| Vydáno v: | Optimization Ročník 73; číslo 3; s. 641 - 672 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Taylor & Francis
03.03.2024
Taylor & Francis LLC |
| Témata: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this article, we employ advanced techniques of convex analysis and
$ \mathcal {C} $
C
-differentiation to examine KKT-type robust necessary and sufficient optimality conditions and robust duality for an uncertain multiobjective programming problem under uncertainty sets, where
$ \mathcal {C} $
C
denotes the set of all
$ \mathcal {G} $
G
-derivatives which are positively homogeneous and convex with respect to the second argument. We first provide the robust constraint qualification of the (RCQ) type via the
$ \mathcal {C} $
C
-derivatives of uncertain constraint functions. We second establish KKT-type robust necessary conditions for robust (weakly) efficient solutions via the subdifferentials of
$ \mathcal {C} $
C
-derivatives to such problems. We third propose two new kinds of generalized
$ \mathcal {C} $
C
-convex functions via the subdifferentials of
$ \mathcal {C} $
C
-derivatives involving max-functions. Under suitable assumptions on the generalized
$ \mathcal {C} $
C
-convexity, KKT-type robust necessary optimality conditions become robust sufficient optimality conditions. Furthermore, we formulate as some applications a dual multiobjective programming problem to the underlying programming and examine weak, strong, and converse duality theorems for the same. Some illustrative examples are also provided for our findings. |
|---|---|
| AbstractList | In this article, we employ advanced techniques of convex analysis and C-differentiation to examine KKT-type robust necessary and sufficient optimality conditions and robust duality for an uncertain multiobjective programming problem under uncertainty sets, where C denotes the set of all G-derivatives which are positively homogeneous and convex with respect to the second argument. We first provide the robust constraint qualification of the (RCQ) type via the C-derivatives of uncertain constraint functions. We second establish KKT-type robust necessary conditions for robust (weakly) efficient solutions via the subdifferentials of C-derivatives to such problems. We third propose two new kinds of generalized C-convex functions via the subdifferentials of C-derivatives involving max-functions. Under suitable assumptions on the generalized C-convexity, KKT-type robust necessary optimality conditions become robust sufficient optimality conditions. Furthermore, we formulate as some applications a dual multiobjective programming problem to the underlying programming and examine weak, strong, and converse duality theorems for the same. Some illustrative examples are also provided for our findings. In this article, we employ advanced techniques of convex analysis and $ \mathcal {C} $ C -differentiation to examine KKT-type robust necessary and sufficient optimality conditions and robust duality for an uncertain multiobjective programming problem under uncertainty sets, where $ \mathcal {C} $ C denotes the set of all $ \mathcal {G} $ G -derivatives which are positively homogeneous and convex with respect to the second argument. We first provide the robust constraint qualification of the (RCQ) type via the $ \mathcal {C} $ C -derivatives of uncertain constraint functions. We second establish KKT-type robust necessary conditions for robust (weakly) efficient solutions via the subdifferentials of $ \mathcal {C} $ C -derivatives to such problems. We third propose two new kinds of generalized $ \mathcal {C} $ C -convex functions via the subdifferentials of $ \mathcal {C} $ C -derivatives involving max-functions. Under suitable assumptions on the generalized $ \mathcal {C} $ C -convexity, KKT-type robust necessary optimality conditions become robust sufficient optimality conditions. Furthermore, we formulate as some applications a dual multiobjective programming problem to the underlying programming and examine weak, strong, and converse duality theorems for the same. Some illustrative examples are also provided for our findings. |
| Author | Su, Tran Van Linh, Dang Hong Nguyen, Thuy Thi Thu |
| Author_xml | – sequence: 1 givenname: Thuy Thi Thu surname: Nguyen fullname: Nguyen, Thuy Thi Thu organization: School of Applied Mathematics and Informatics, Hanoi University of Science and Technology – sequence: 2 givenname: Tran Van surname: Su fullname: Su, Tran Van email: tvsu@ued.udn.vn, sutrantud@gmail.com organization: Department of Mathematics, The University of Danang - University of Science and Education – sequence: 3 givenname: Dang Hong surname: Linh fullname: Linh, Dang Hong organization: School of Applied Mathematics and Informatics, Hanoi University of Science and Technology |
| BookMark | eNqFkE1r3DAQhkVIoJtNfkJB0LM3-vJ6RS4tIW0KgUJpzmKsj0WLLbmSnLD_vnI2vfSQnmYG3vedmecSnYcYLEIfKdlQsiM3hHFOJRcbRhjbMMpYR7sztKKEyUZI0Z6j1aJpFtEHdJnzgRBGt0ys0PQz9nMuOE7FjzD4csQ6BuOLjyFjFxMe56EO_cHq4p8tnlLcJxhHH_ZL3w92zHgOxiZsoEBttU0FfKhJEAz2JWOYpsFreM28QhcOhmyv3-oaPX29_3X30Dz--Pb97stjoznflcZ2zoGRO6MF4dK2hJiub1tpqYPtduvqW73jO0IJyBYYGGFc10kjoOdGyJ6v0adTbj3y92xzUYc4p1BXKk46xlohmKiq9qTSKeacrFNTqhzSUVGiFrjqL1y1wFVvcKvv9h-f9uX1wZLAD_91fz65faiER3iJaTCqwHGIySUI2tcj34_4A-0Xl9I |
| CitedBy_id | crossref_primary_10_1007_s10957_025_02783_5 crossref_primary_10_1007_s12190_025_02584_z |
| Cites_doi | 10.1007/s10957-018-1437-8 10.1016/j.na.2011.04.006 10.1007/s10957-009-9521-8 10.1016/j.ejor.2017.08.003 10.1007/s11590-006-0013-6 10.1007/0-387-28020-0 10.1016/j.ejor.2014.03.013 10.1080/02331934.2016.1195384 10.1287/moor.23.4.769 10.1007/s10957-014-0564-0 10.1016/j.na.2016.01.002 10.1007/3-540-31247-1 10.1515/9781400831050 10.1016/j.ejor.2017.04.012 10.1515/9781400873173 10.1080/02331934.2022.2038154 10.1007/s10898-009-9522-z 10.1007/s10957-009-9518-3 10.1007/978-3-662-02796-7 10.1007/s10957-011-9896-1 10.1016/j.ejor.2017.12.018 10.1137/100791841 10.1080/02331934.2020.1836636 10.4134/BKMS.2014.51.1.287 10.1007/s10957-019-01607-7 10.1016/j.ejor.2013.02.037 10.1007/978-3-642-54265-7 10.1016/j.ejor.2015.06.031 10.1137/19M1251461 10.1007/978-94-009-0369-2_1 10.1007/s00291-015-0418-7 10.1080/02331934.2013.769104 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| DOI | 10.1080/02331934.2022.2122717 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-4945 |
| EndPage | 672 |
| ExternalDocumentID | 10_1080_02331934_2022_2122717 2122717 |
| Genre | Research Article |
| GroupedDBID | .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c338t-e7ffad98dc4039e500d7b559e1fa666f494bf38010a95a2ad4df779d4ab3d49b3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000854253400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0233-1934 |
| IngestDate | Wed Aug 13 10:49:56 EDT 2025 Sat Nov 29 06:01:42 EST 2025 Tue Nov 18 20:51:17 EST 2025 Mon Oct 20 23:48:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-e7ffad98dc4039e500d7b559e1fa666f494bf38010a95a2ad4df779d4ab3d49b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3072254424 |
| PQPubID | 27961 |
| PageCount | 32 |
| ParticipantIDs | crossref_primary_10_1080_02331934_2022_2122717 crossref_citationtrail_10_1080_02331934_2022_2122717 proquest_journals_3072254424 informaworld_taylorfrancis_310_1080_02331934_2022_2122717 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-03 |
| PublicationDateYYYYMMDD | 2024-03-03 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | Optimization |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis LLC |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
| References | e_1_3_3_30_1 Lee GM (e_1_3_3_17_1) 2015; 16 e_1_3_3_18_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_13_1 e_1_3_3_16_1 e_1_3_3_35_1 Aubin JP (e_1_3_3_5_1) 1990 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_32_1 Goberna MA (e_1_3_3_11_1) 1998 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_23_1 e_1_3_3_4_1 e_1_3_3_22_1 |
| References_xml | – ident: e_1_3_3_7_1 doi: 10.1007/s10957-018-1437-8 – ident: e_1_3_3_14_1 doi: 10.1016/j.na.2011.04.006 – ident: e_1_3_3_35_1 doi: 10.1007/s10957-009-9521-8 – ident: e_1_3_3_10_1 doi: 10.1016/j.ejor.2017.08.003 – ident: e_1_3_3_36_1 doi: 10.1007/s11590-006-0013-6 – ident: e_1_3_3_31_1 doi: 10.1007/0-387-28020-0 – ident: e_1_3_3_4_1 doi: 10.1016/j.ejor.2014.03.013 – ident: e_1_3_3_20_1 doi: 10.1080/02331934.2016.1195384 – volume: 16 start-page: 2039 year: 2015 ident: e_1_3_3_17_1 article-title: On nonsmooth optimality theorems for robust multiobjective optimization problems publication-title: J Nonlinear Convex Anal – ident: e_1_3_3_24_1 doi: 10.1287/moor.23.4.769 – volume-title: Linear semi-infinite optimization year: 1998 ident: e_1_3_3_11_1 – ident: e_1_3_3_12_1 doi: 10.1007/s10957-014-0564-0 – ident: e_1_3_3_16_1 doi: 10.1016/j.na.2016.01.002 – ident: e_1_3_3_28_1 doi: 10.1007/3-540-31247-1 – ident: e_1_3_3_23_1 doi: 10.1515/9781400831050 – ident: e_1_3_3_29_1 doi: 10.1016/j.ejor.2017.04.012 – ident: e_1_3_3_30_1 doi: 10.1515/9781400873173 – ident: e_1_3_3_8_1 doi: 10.1080/02331934.2022.2038154 – ident: e_1_3_3_26_1 doi: 10.1007/s10898-009-9522-z – ident: e_1_3_3_34_1 doi: 10.1007/s10957-009-9518-3 – ident: e_1_3_3_6_1 doi: 10.1007/978-3-662-02796-7 – ident: e_1_3_3_27_1 doi: 10.1007/s10957-011-9896-1 – ident: e_1_3_3_21_1 doi: 10.1016/j.ejor.2017.12.018 – ident: e_1_3_3_13_1 doi: 10.1137/100791841 – ident: e_1_3_3_3_1 doi: 10.1080/02331934.2020.1836636 – volume-title: Set-Valued analysis year: 1990 ident: e_1_3_3_5_1 – ident: e_1_3_3_18_1 doi: 10.4134/BKMS.2014.51.1.287 – ident: e_1_3_3_33_1 doi: 10.1007/s10957-019-01607-7 – ident: e_1_3_3_19_1 doi: 10.1016/j.ejor.2013.02.037 – ident: e_1_3_3_2_1 doi: 10.1007/978-3-642-54265-7 – ident: e_1_3_3_22_1 doi: 10.1016/j.ejor.2015.06.031 – ident: e_1_3_3_15_1 doi: 10.1137/19M1251461 – ident: e_1_3_3_32_1 doi: 10.1007/978-94-009-0369-2_1 – ident: e_1_3_3_25_1 doi: 10.1007/s00291-015-0418-7 – ident: e_1_3_3_9_1 doi: 10.1080/02331934.2013.769104 |
| SSID | ssj0021624 |
| Score | 2.342157 |
| Snippet | In this article, we employ advanced techniques of convex analysis and
$ \mathcal {C} $
C
-differentiation to examine KKT-type robust necessary and sufficient... In this article, we employ advanced techniques of convex analysis and C-differentiation to examine KKT-type robust necessary and sufficient optimality... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 641 |
| SubjectTerms | Convex analysis Convexity Derivatives duality theorems KKT-type robust optimality conditions mathcal {C} Mathematical programming Multiobjective programming problem with uncertain data Multiple objective analysis Robustness (mathematics) Uncertainty uncertainty sets |
| Title | Robust optimality conditions for multiobjective programming problems under data uncertainty and its applications |
| URI | https://www.tandfonline.com/doi/abs/10.1080/02331934.2022.2122717 https://www.proquest.com/docview/3072254424 |
| Volume | 73 |
| WOSCitedRecordID | wos000854253400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1029-4945 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021624 issn: 0233-1934 databaseCode: TFW dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPOjB3-J0Sg5eM9sma5qjiMODDJGpu5UmaWDi1rF2-_t9SdOxIbKD3trDF0Ley3t57ZfvIXQbxz1qUzdJTGAIMwklMuaM5Epb_X3dy9yt9_dnPhgko5F48WzC0tMqbQ1taqEIF6vt5s5k2TDi7iDNgONQ-0UkiroQeyOoSSAKQ-q3W3PY_1iVXGHs2tpaBLGQ5g7Pb6NsZKcN7dIfsdoloP7hP0z9CB340ye-r93lGO3k0xO0v6ZJeIpmr4VclBUuIJZM3CEdQ8msa2YXhplix0Es5GcdKrFneE0AjX17mhLbq2lzbOmn8Khq2gGMBPPG46rE67_Nz9Bb_3H48ER8WwaioJ6tSM6NybRItGIBFbm1KJdQmOShAcPGhgkmDYXMF2Sil0WZZtpwLjTLJNVMSHqOWtNiml8gLJnURiSKcmasUKEMlAqhwonh0MTiKGwj1pgjVV6z3LbO-ErDRtrUL2hqFzT1C9pG3RVsVot2bAOIdVunlftaYurWJindgu00jpH6_Q-QgEdW_C1il38Y-grtwStzlDfaQa1qvsiv0a5aVuNyfuM8_RuV6vo9 |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAEH3ojBgBy4drRN1jZHhJhAjB3QgN2qJmmkIfbQ2vH7sdN22oTQDnCrVNmKYteO08-fCbkOghbD1O1ExjUONxFzZBByJ1Ua-fd1K7Fd72-dsNuN-n2x2AuDsEqsoU1BFGFjNX7ceBldQeJuIM-A5zC8EvH9JgRfH4qSdbLRglyL_Pm99vu86PICO9gWRRyUqbp4flOzlJ-W2Et_RGubgtp7_7H4fbJbHkDpbeExB2QtHR2SnQVawiMyeRnLWZbTMYSToT2nU6iadQHuorBUamGIY_lRREtagryGIE3LCTUZxe60KUUEKjyqAnkAmmDhdJBndPHP-TF5bd_37h6ccjKDo6CkzZ00NCbRItKKu0ykaNRQQm2SegZsGxguuDQMkp-biFbiJ5prE4ZC80QyzYVkJ6Q2Go_SU0Ill9qISIHlDHIVSlcpD4qcAG0Z-F6d8MoesSppy3F6xmfsVeym5YbGuKFxuaF10pyLTQrejlUCYtHYcW4vTEwx3SRmK2QblWfEZQgAETf0kf_N52d_UH1Fth56z52489h9Oifb8IpbBBxrkFo-naUXZFN95YNsemnd_htxQP5n |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86RfTgtzidmoPXzrbJ2uYo6lAcY8jU3UqTNDBx61g7_35f0nRsiOygt0J5IeS9vo_0934PoesgaBEdup1IucqhKiIOD0LqpEJq_n3ZSkzX-1sn7HajwYD1LJowt7BKXUOrkijC-Gr9cU-kqhBxNxBmwHCIvhHx_Sb4Xh9qknW0AalzoI28336f11xeYObaahFHy1RNPL8tsxSelshLfzhrE4Hae_-w9320a9NPfFvaywFaS8eHaGeBlPAITV4yPssLnIEzGZksHUPNLEtoF4adYgNCzPhH6SuxhXiNQBrb-TQ51r1pU6zxp_AoStwBrAT7xsMix4v_zY_Ra_uhf_fo2LkMjoCCtnDSUKlEskgK6hKWapWGHCqT1FOg2UBRRrkiEPrchLUSP5FUqjBkkiacSMo4OUG1cTZOTxHmlEvFIkFCqjRTIXeF8KDECSBrooHv1RGt1BELS1quZ2d8xl7FbWoPNNYHGtsDraPmXGxSsnasEmCLuo4Lc12iytkmMVkh26gMI7YOAETc0Nfsbz49-8PSV2ird9-OO0_d53O0DW-ogb-RBqoV01l6gTbFVzHMp5fG6L8Bb6r9GQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+optimality+conditions+for+multiobjective+programming+problems+under+data+uncertainty+and+its+applications&rft.jtitle=Optimization&rft.au=Nguyen%2C+Thuy+Thi+Thu&rft.au=Su%2C+Tran+Van&rft.au=Linh%2C+Dang+Hong&rft.date=2024-03-03&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=73&rft.issue=3&rft.spage=641&rft.epage=672&rft_id=info:doi/10.1080%2F02331934.2022.2122717&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331934_2022_2122717 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon |