Spatial interpolation using conditional generative adversarial neural networks

Spatial interpolation is a traditional geostatistical operation that aims at predicting the attribute values of unobserved locations given a sample of data defined on point supports. However, the continuity and heterogeneity underlying spatial data are too complex to be approximated by classic stati...

Full description

Saved in:
Bibliographic Details
Published in:International journal of geographical information science : IJGIS Vol. 34; no. 4; pp. 735 - 758
Main Authors: Zhu, Di, Cheng, Ximeng, Zhang, Fan, Yao, Xin, Gao, Yong, Liu, Yu
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 02.04.2020
Taylor & Francis LLC
Subjects:
ISSN:1365-8816, 1362-3087, 1365-8824
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Spatial interpolation is a traditional geostatistical operation that aims at predicting the attribute values of unobserved locations given a sample of data defined on point supports. However, the continuity and heterogeneity underlying spatial data are too complex to be approximated by classic statistical models. Deep learning models, especially the idea of conditional generative adversarial networks (CGANs), provide us with a perspective for formalizing spatial interpolation as a conditional generative task. In this article, we design a novel deep learning architecture named conditional encoder-decoder generative adversarial neural networks (CEDGANs) for spatial interpolation, therein combining the encoder-decoder structure with adversarial learning to capture deep representations of sampled spatial data and their interactions with local structural patterns. A case study on elevations in China demonstrates the ability of our model to achieve outstanding interpolation results compared to benchmark methods. Further experiments uncover the learned spatial knowledge in the model's hidden layers and test the potential to generalize our adversarial interpolation idea across domains. This work is an endeavor to investigate deep spatial knowledge using artificial intelligence. The proposed model can benefit practical scenarios and enlighten future research in various geographical applications related to spatial prediction.
AbstractList Spatial interpolation is a traditional geostatistical operation that aims at predicting the attribute values of unobserved locations given a sample of data defined on point supports. However, the continuity and heterogeneity underlying spatial data are too complex to be approximated by classic statistical models. Deep learning models, especially the idea of conditional generative adversarial networks (CGANs), provide us with a perspective for formalizing spatial interpolation as a conditional generative task. In this article, we design a novel deep learning architecture named conditional encoder-decoder generative adversarial neural networks (CEDGANs) for spatial interpolation, therein combining the encoder-decoder structure with adversarial learning to capture deep representations of sampled spatial data and their interactions with local structural patterns. A case study on elevations in China demonstrates the ability of our model to achieve outstanding interpolation results compared to benchmark methods. Further experiments uncover the learned spatial knowledge in the model’s hidden layers and test the potential to generalize our adversarial interpolation idea across domains. This work is an endeavor to investigate deep spatial knowledge using artificial intelligence. The proposed model can benefit practical scenarios and enlighten future research in various geographical applications related to spatial prediction.
Author Cheng, Ximeng
Yao, Xin
Gao, Yong
Liu, Yu
Zhu, Di
Zhang, Fan
Author_xml – sequence: 1
  givenname: Di
  orcidid: 0000-0002-3237-6032
  surname: Zhu
  fullname: Zhu, Di
  organization: SpaceTimeLab, Department of Civil, Environmental and Geomatic Engineering, University College London
– sequence: 2
  givenname: Ximeng
  orcidid: 0000-0001-9923-7240
  surname: Cheng
  fullname: Cheng, Ximeng
  organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University
– sequence: 3
  givenname: Fan
  orcidid: 0000-0002-3643-018X
  surname: Zhang
  fullname: Zhang, Fan
  organization: Senseable City Laboratory, Massachusetts Institute of Technology
– sequence: 4
  givenname: Xin
  surname: Yao
  fullname: Yao, Xin
  organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University
– sequence: 5
  givenname: Yong
  surname: Gao
  fullname: Gao, Yong
  organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University
– sequence: 6
  givenname: Yu
  orcidid: 0000-0002-0016-2902
  surname: Liu
  fullname: Liu, Yu
  email: liuyu@urban.pku.edu.cn
  organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University
BookMark eNqFkM9PwyAUx4mZiXPuTzBp4rkTytpCvGgWfyWLHtQzAfq6oB1UaGf230u3efGgp8fjfT8v8DlFI-ssIHRO8Ixghi8JLXLGSDHLMOEzknNOsuwIjeN9llLMytHunKdD6ARNQzAKZ5Rxxsp8jJ5eWtkZ2STGduBb18TO2aQPxq4S7Wxlhj7OV2DBx-EGElltwAfpB8xC73el-3L-I5yh41o2AaaHOkFvd7evi4d0-Xz_uLhZpppS1qVQSFwWEjRXCmShGFQVn8-lzuqalrrKqSKKkxwwaCgVh7oqNcFznjGlZF7TCbrY7229--whdOLd9T6-M4iMloQURVmwmLrap7R3IXiohTbd7oOdl6YRBIvBofhxKAaH4uAw0vkvuvVmLf32X-56zxlbO7-WUUxTiU5uG-drL602QdC_V3wDofmNUg
CitedBy_id crossref_primary_10_1109_JSTARS_2020_3023730
crossref_primary_10_3390_rs15041038
crossref_primary_10_1155_2022_1817628
crossref_primary_10_1016_j_measurement_2023_113019
crossref_primary_10_1016_j_rse_2021_112818
crossref_primary_10_3390_ijgi11010036
crossref_primary_10_1016_j_jag_2025_104571
crossref_primary_10_1109_JSTARS_2025_3547364
crossref_primary_10_3390_rs13173533
crossref_primary_10_1080_13658816_2024_2347316
crossref_primary_10_1080_13658816_2024_2426067
crossref_primary_10_3390_ijgi12080347
crossref_primary_10_1080_10106049_2022_2063413
crossref_primary_10_1109_LGRS_2024_3403835
crossref_primary_10_1038_s41598_024_72807_z
crossref_primary_10_3390_s22207772
crossref_primary_10_3390_ijgi11100527
crossref_primary_10_1371_journal_pone_0242010
crossref_primary_10_3390_ijgi9120734
crossref_primary_10_1017_eds_2023_1
crossref_primary_10_1080_13658816_2023_2275160
crossref_primary_10_1111_tgis_12965
crossref_primary_10_1080_10106049_2023_2252389
crossref_primary_10_3390_rs14051166
crossref_primary_10_1109_TGRS_2024_3360489
crossref_primary_10_1109_JSTARS_2024_3409697
crossref_primary_10_1109_TNET_2021_3136707
crossref_primary_10_1007_s11004_023_10125_2
crossref_primary_10_3390_app15116113
crossref_primary_10_1080_13658816_2024_2344186
crossref_primary_10_1080_13658816_2024_2414409
crossref_primary_10_1007_s42044_021_00089_z
crossref_primary_10_1016_j_compgeo_2025_107177
crossref_primary_10_1016_j_scitotenv_2022_153948
crossref_primary_10_1016_j_earscirev_2022_104191
crossref_primary_10_3390_rs15020305
crossref_primary_10_1016_j_cageo_2022_105085
crossref_primary_10_1080_13658816_2024_2358052
crossref_primary_10_1080_10106049_2025_2471087
crossref_primary_10_1080_23729333_2019_1615729
crossref_primary_10_1080_13658816_2025_2508840
crossref_primary_10_1016_j_jag_2023_103496
crossref_primary_10_1016_j_spasta_2024_100862
crossref_primary_10_1109_TGRS_2024_3408793
crossref_primary_10_3390_rs13040676
crossref_primary_10_1016_j_buildenv_2022_109477
crossref_primary_10_1016_j_jag_2022_102936
crossref_primary_10_1057_s41599_025_05545_w
crossref_primary_10_3390_ijgi10090619
crossref_primary_10_1007_s11442_022_2013_6
crossref_primary_10_1080_24694452_2023_2206469
crossref_primary_10_1016_j_healthplace_2024_103411
crossref_primary_10_1007_s00521_024_09893_7
crossref_primary_10_1080_13658816_2022_2147530
crossref_primary_10_3390_ijgi12050181
crossref_primary_10_1016_j_eswa_2025_128427
crossref_primary_10_1080_13658816_2020_1768260
crossref_primary_10_1109_TITS_2021_3110268
crossref_primary_10_1111_tgis_12933
crossref_primary_10_1080_13658816_2022_2055036
crossref_primary_10_1109_JSTARS_2023_3288296
crossref_primary_10_1080_13658816_2023_2268665
crossref_primary_10_3390_jmse12020228
crossref_primary_10_3390_rs14051233
crossref_primary_10_1016_j_isprsjprs_2022_04_028
crossref_primary_10_3390_a13030061
crossref_primary_10_3390_s22030745
crossref_primary_10_3390_su14159056
crossref_primary_10_3390_ijgi10090600
crossref_primary_10_1016_j_cageo_2023_105482
crossref_primary_10_1007_s10707_021_00454_x
crossref_primary_10_1111_tgis_12915
crossref_primary_10_1038_s41598_023_49343_3
crossref_primary_10_1111_cgf_14941
crossref_primary_10_1016_j_neucom_2025_131181
crossref_primary_10_1016_j_spasta_2023_100743
crossref_primary_10_3390_math11061522
crossref_primary_10_1111_jen_13455
crossref_primary_10_3390_rs13163089
crossref_primary_10_1016_j_rse_2025_114900
crossref_primary_10_1117_1_JRS_19_014504
crossref_primary_10_1080_13658816_2022_2119476
crossref_primary_10_3390_agronomy14050938
crossref_primary_10_1080_13658816_2024_2391969
crossref_primary_10_3390_rs14051206
crossref_primary_10_3233_ICA_240732
crossref_primary_10_1016_j_scitotenv_2024_175787
crossref_primary_10_1007_s10489_024_05913_0
crossref_primary_10_1016_j_jag_2022_102734
crossref_primary_10_1080_13658816_2025_2512219
crossref_primary_10_1016_j_envsoft_2025_106338
crossref_primary_10_1080_17489725_2021_1917710
crossref_primary_10_1109_MGRS_2023_3343968
crossref_primary_10_1109_TGRS_2024_3423716
crossref_primary_10_3390_ijgi11050311
crossref_primary_10_1007_s00704_025_05637_2
crossref_primary_10_1016_j_buildenv_2023_110211
crossref_primary_10_1007_s13131_021_1974_0
crossref_primary_10_1016_j_compenvurbsys_2024_102106
crossref_primary_10_1371_journal_pone_0289286
crossref_primary_10_3390_rs15071954
crossref_primary_10_1016_j_jag_2023_103338
crossref_primary_10_1109_JSTARS_2025_3594062
crossref_primary_10_1007_s12145_024_01381_9
crossref_primary_10_1016_j_jag_2025_104461
crossref_primary_10_1016_j_rse_2021_112381
crossref_primary_10_1016_j_isprsjprs_2025_02_007
crossref_primary_10_3390_rs11232829
Cites_doi 10.1007/BF00889887
10.1016/j.neunet.2014.09.003
10.1007/s10040-004-0432-3
10.1111/j.1538-4632.1995.tb00338.x
10.1068/a301873
10.1016/j.ecoinf.2010.12.003
10.1007/978-3-642-01976-0_5
10.1080/13658816.2017.1413192
10.1016/B978-008044910-4.00530-7
10.1016/j.spasta.2015.04.004
10.1109/CVPR.2015.7298965
10.1111/j.1467-8306.2004.00424.x
10.1111/j.1538-4632.1981.tb00731.x
10.1109/TPAMI.2016.2644615
10.1068/a250383
10.1016/j.spasta.2015.05.008
10.1016/j.cageo.2007.05.001
10.1080/13658810802467969
10.2113/gsecongeo.58.8.1246
10.1002/2017WR022148
10.1002/9781118662953
10.1073/pnas.0805845106
10.1038/nature14539
10.5194/isprsarchives-XLI-B3-247-2016
10.1080/02693799008941549
10.1080/24694452.2017.1352480
10.4135/9780857020130.n9
10.2307/143141
10.1111/1467-9876.00113
10.1016/j.patcog.2018.11.028
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
2019 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
– notice: 2019 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/13658816.2019.1599122
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1362-3087
1365-8824
EndPage 758
ExternalDocumentID 10_1080_13658816_2019_1599122
1599122
Genre Research Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41625003; 41830645
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2017YFB0503602
GroupedDBID -~X
..I
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAIKC
AAJMT
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABRLO
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACHQT
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AFKVX
AFRAH
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EAP
EBO
EBS
EDO
EMK
EPL
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MM-
NA5
NX~
O9-
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TNC
TQWBC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZCA
ZGOLN
~02
~S~
AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-e6a076aec9bbea6b8edd944ac2ff37cd53b1b915e0ece7b9efd7c104928bba5f3
IEDL.DBID TFW
ISICitedReferencesCount 124
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467089500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1365-8816
IngestDate Sun Sep 07 03:47:30 EDT 2025
Sat Nov 29 06:05:14 EST 2025
Tue Nov 18 22:33:33 EST 2025
Mon Oct 20 23:48:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-e6a076aec9bbea6b8edd944ac2ff37cd53b1b915e0ece7b9efd7c104928bba5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3643-018X
0000-0001-9923-7240
0000-0002-0016-2902
0000-0002-3237-6032
PQID 2371166768
PQPubID 53147
PageCount 24
ParticipantIDs crossref_citationtrail_10_1080_13658816_2019_1599122
proquest_journals_2371166768
informaworld_taylorfrancis_310_1080_13658816_2019_1599122
crossref_primary_10_1080_13658816_2019_1599122
PublicationCentury 2000
PublicationDate 2020-04-02
PublicationDateYYYYMMDD 2020-04-02
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of geographical information science : IJGIS
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References Salimans T. (CIT0044) 2016
CIT0050
CIT0030
CIT0052
CIT0010
CIT0032
CIT0031
CIT0053
CIT0012
Gauthier J. (CIT0016) 2014
CIT0034
CIT0011
CIT0033
Fotheringham A.S. (CIT0014) 2008
Guã©Rin E. (CIT0020) 2017; 36
Yosinski J. (CIT0051) 2014
CIT0036
CIT0013
CIT0038
CIT0015
CIT0037
CIT0018
CIT0039
Burrough P.A. (CIT0007) 1999; 15
CIT0041
CIT0042
CIT0001
CIT0023
CIT0045
CIT0022
Goodchild M.F. (CIT0017) 2004; 94
Hedayat A. (CIT0021) 1991
Thompson S.K. (CIT0047) 1996
CIT0003
CIT0025
CIT0005
Cochran W.G. (CIT0009) 1963
CIT0027
CIT0049
CIT0004
CIT0048
CIT0006
CIT0028
CIT0008
References_xml – ident: CIT0010
  doi: 10.1007/BF00889887
– ident: CIT0045
  doi: 10.1016/j.neunet.2014.09.003
– ident: CIT0042
– volume-title: Design and inference in finite population sampling
  year: 1991
  ident: CIT0021
– ident: CIT0037
  doi: 10.1007/s10040-004-0432-3
– ident: CIT0001
  doi: 10.1111/j.1538-4632.1995.tb00338.x
– ident: CIT0012
  doi: 10.1068/a301873
– ident: CIT0031
  doi: 10.1016/j.ecoinf.2010.12.003
– ident: CIT0013
  doi: 10.1007/978-3-642-01976-0_5
– ident: CIT0053
  doi: 10.1080/13658816.2017.1413192
– start-page: 2234
  volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: CIT0044
– ident: CIT0025
– ident: CIT0028
  doi: 10.1016/B978-008044910-4.00530-7
– ident: CIT0032
  doi: 10.1016/j.spasta.2015.04.004
– ident: CIT0033
  doi: 10.1109/CVPR.2015.7298965
– ident: CIT0050
– volume: 94
  start-page: 709714
  issue: 4
  year: 2004
  ident: CIT0017
  publication-title: Annals of the Association of American Geographers
  doi: 10.1111/j.1467-8306.2004.00424.x
– ident: CIT0023
  doi: 10.1111/j.1538-4632.1981.tb00731.x
– start-page: 3320
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: CIT0051
– ident: CIT0006
  doi: 10.1109/TPAMI.2016.2644615
– ident: CIT0018
  doi: 10.1068/a250383
– ident: CIT0003
  doi: 10.1016/j.spasta.2015.05.008
– ident: CIT0022
  doi: 10.1016/j.cageo.2007.05.001
– ident: CIT0039
– ident: CIT0049
  doi: 10.1080/13658810802467969
– volume-title: The SAGE handbook of spatial analysis
  year: 2008
  ident: CIT0014
– ident: CIT0038
  doi: 10.2113/gsecongeo.58.8.1246
– ident: CIT0027
  doi: 10.1002/2017WR022148
– ident: CIT0036
  doi: 10.1002/9781118662953
– ident: CIT0005
  doi: 10.1073/pnas.0805845106
– ident: CIT0030
  doi: 10.1038/nature14539
– ident: CIT0008
  doi: 10.5194/isprsarchives-XLI-B3-247-2016
– volume: 36
  issue: 6
  year: 2017
  ident: CIT0020
  publication-title: Acm Transactions on Graphics
– ident: CIT0041
  doi: 10.1080/02693799008941549
– ident: CIT0015
  doi: 10.1080/24694452.2017.1352480
– volume: 15
  start-page: 357
  issue: 3
  year: 1999
  ident: CIT0007
  publication-title: Landscape & Urban Planning
– volume-title: Adaptive sampling
  year: 1996
  ident: CIT0047
– volume-title: Sampling techniques
  year: 1963
  ident: CIT0009
– start-page: 5. Stanford, CA
  volume-title: Class project for Stanford CS231N: convolutional neural networks for visual recognition, Winter semester
  year: 2014
  ident: CIT0016
– ident: CIT0004
  doi: 10.4135/9780857020130.n9
– ident: CIT0034
– ident: CIT0048
  doi: 10.2307/143141
– ident: CIT0011
  doi: 10.1111/1467-9876.00113
– ident: CIT0052
  doi: 10.1016/j.patcog.2018.11.028
SSID ssib023898875
ssj0001015
ssib000159086
Score 2.617612
Snippet Spatial interpolation is a traditional geostatistical operation that aims at predicting the attribute values of unobserved locations given a sample of data...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 735
SubjectTerms Artificial intelligence
Coders
Deep learning
encoder-decoder
Encoders-Decoders
generative adversarial networks
Geostatistics
Heterogeneity
Interpolation
Machine learning
Mathematical models
Neural networks
Spatial data
Spatial interpolation
spatial prediction
Statistical analysis
Statistical models
Title Spatial interpolation using conditional generative adversarial neural networks
URI https://www.tandfonline.com/doi/abs/10.1080/13658816.2019.1599122
https://www.proquest.com/docview/2371166768
Volume 34
WOSCitedRecordID wos000467089500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis
  customDbUrl:
  eissn: 1362-3087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001015
  issn: 1365-8816
  databaseCode: TFW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yBL34W5xOycFr59KmTXMUcXgaHibuVvLSZA5kiq2C_715aTo3RHbQU09J6MvL-xG-fB8hl1keG52BjqxWMuIxiEgZJSIjLIdBolNmSi82IUajfDKR9wFNWAVYJfbQtiGK8LEaD7eCqkXEXSEyK88ZAgyY7Lt8LFmMUdilftQwGA8flwoY1PReJFyXn6Q7Vd8FsnPItH2ZhVO2b3x-W2Ule61wm_6I5T5BDXf_4df2yE6oTul14077ZMPMD8hWEEp_-jwkI5Qwdi5LZ40-V4Oko4ien1LXWpez5m6RTj2dNcZSqlDzuVLo6RTpM_3Hg8-rI_IwvB3f3EVBkiHSrpetI5OpgciU0RLAqAxyU5aSc6VjaxOhyzQBBpKlZmC0ESCNLYV2HZ-McwCV2uSYdOYvc3NCaOoKRZUIUKXSHLhQoNMUuOV5ZgWA7RLemrrQga8cZTOeCxZoTVtjFWisIhirS_qLYa8NYce6AXJ5H4va35TYRtakSNaM7bWbXoSzXxVxIhhD6HB--oepz8h2jK09goTiHunUb-_mnGzqj3pWvV14L_8CdcH4Hg
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5ShXrxLVar7sHr1mY32WyOIpaKtaeKvYVMNqkFqdJWwX9vZh-1RcSDnvaUhJ1M5hG-fB8hF0kaWZOACZ3RMmQRiFBbLUIrHIN2bDi1WS42Ifr9dDiUy29hEFaJPbQriCLyWI2HGy-jK0jcJUKz0pQiwoDKlk_IkkY-DK9zn2vRywedx6USBlW9FynXZyjpz9VXiexdkldvs3DO6pXPT8us5K8VdtNv0TxPUZ3t__i5HbJVFqjBVeFRu2TNTvZIvdRKf_rYJ31UMfZeG4wLia4CTBcggH4U-O46GxfXi8EoZ7TGcBpolH2eaXT2ABk080-OP58dkIfOzeC6G5aqDKHx7ew8tIlui0RbIwGsTiC1WSYZ0yZyLhYm4zFQkJTbtjVWgLQuE8Y3fTJKATR38SGpTV4m9ogE3NeKOhagM20YMKHBcA7MsTRxAsA1CKtsrUxJWY7KGc-KlsymlbEUGkuVxmqQ1mLYa8HZ8dsAubyRap5flrhC2UTFv4xtVruuyuM_U1EsKEX0cHr8h6nPSb07uO-p3m3_7oRsRtjpI2YoapLafPpmT8mGeZ-PZ9Oz3OU_ATF0_Ek
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yRb34W5xO7cFrdWnTpjmKOhRl7DBxt5CXJnMgU-wU_O_Na9PpENlBTz0loS8v70f48n2EnKRZZHQKOrRaiZBFwENlFA8NtwzasU6oyUuxCd7tZoOB6Hk0YeFhldhD24oooozVeLhfclsj4s4QmZVlFAEGVJy6fCxo5KLwoiudU-y_-p2HbxUMinpPM65LUMIdq68K2XlkUj_NwjnrRz6_LTOTvmbITX8E8zJDddb_4d82yJovT4Pzyp82yYIZb5EVr5T--LFNuqhh7Hw2GFUCXRWULkD4_DBwvXU-qi4Xg2HJZ43BNFAo-lwodPUA-TPLT4k-L3bIfeeqf3Edek2GULtmdhKaVLV5qowWAEalkJk8F4wpHVkbc50nMVAQNDFtow0HYWzOtWv5RJQBqMTGu6Qxfh6bPRIkrlJUMQeVK82AcQU6SYBZlqWWA9gmYbWppfaE5aib8SSp5zWtjSXRWNIbq0lOp8NeKsaOeQPE932Uk_KqxFa6JjKeM7ZVb7r0h7-QUcwpRexwtv-HqY_Jcu-yI-9uurcHZDXCNh8BQ1GLNCavb-aQLOn3yah4PSod_hM4BPr6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+interpolation+using+conditional+generative+adversarial+neural+networks&rft.jtitle=International+journal+of+geographical+information+science+%3A+IJGIS&rft.au=Zhu%2C+Di&rft.au=Cheng%2C+Ximeng&rft.au=Zhang%2C+Fan&rft.au=Yao%2C+Xin&rft.date=2020-04-02&rft.pub=Taylor+%26+Francis+LLC&rft.issn=1365-8816&rft.eissn=1365-8824&rft.volume=34&rft.issue=4&rft.spage=735&rft.epage=758&rft_id=info:doi/10.1080%2F13658816.2019.1599122&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8816&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8816&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8816&client=summon