Spatial interpolation using conditional generative adversarial neural networks
Spatial interpolation is a traditional geostatistical operation that aims at predicting the attribute values of unobserved locations given a sample of data defined on point supports. However, the continuity and heterogeneity underlying spatial data are too complex to be approximated by classic stati...
Saved in:
| Published in: | International journal of geographical information science : IJGIS Vol. 34; no. 4; pp. 735 - 758 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
02.04.2020
Taylor & Francis LLC |
| Subjects: | |
| ISSN: | 1365-8816, 1362-3087, 1365-8824 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Spatial interpolation is a traditional geostatistical operation that aims at predicting the attribute values of unobserved locations given a sample of data defined on point supports. However, the continuity and heterogeneity underlying spatial data are too complex to be approximated by classic statistical models. Deep learning models, especially the idea of conditional generative adversarial networks (CGANs), provide us with a perspective for formalizing spatial interpolation as a conditional generative task. In this article, we design a novel deep learning architecture named conditional encoder-decoder generative adversarial neural networks (CEDGANs) for spatial interpolation, therein combining the encoder-decoder structure with adversarial learning to capture deep representations of sampled spatial data and their interactions with local structural patterns. A case study on elevations in China demonstrates the ability of our model to achieve outstanding interpolation results compared to benchmark methods. Further experiments uncover the learned spatial knowledge in the model's hidden layers and test the potential to generalize our adversarial interpolation idea across domains. This work is an endeavor to investigate deep spatial knowledge using artificial intelligence. The proposed model can benefit practical scenarios and enlighten future research in various geographical applications related to spatial prediction. |
|---|---|
| AbstractList | Spatial interpolation is a traditional geostatistical operation that aims at predicting the attribute values of unobserved locations given a sample of data defined on point supports. However, the continuity and heterogeneity underlying spatial data are too complex to be approximated by classic statistical models. Deep learning models, especially the idea of conditional generative adversarial networks (CGANs), provide us with a perspective for formalizing spatial interpolation as a conditional generative task. In this article, we design a novel deep learning architecture named conditional encoder-decoder generative adversarial neural networks (CEDGANs) for spatial interpolation, therein combining the encoder-decoder structure with adversarial learning to capture deep representations of sampled spatial data and their interactions with local structural patterns. A case study on elevations in China demonstrates the ability of our model to achieve outstanding interpolation results compared to benchmark methods. Further experiments uncover the learned spatial knowledge in the model’s hidden layers and test the potential to generalize our adversarial interpolation idea across domains. This work is an endeavor to investigate deep spatial knowledge using artificial intelligence. The proposed model can benefit practical scenarios and enlighten future research in various geographical applications related to spatial prediction. |
| Author | Cheng, Ximeng Yao, Xin Gao, Yong Liu, Yu Zhu, Di Zhang, Fan |
| Author_xml | – sequence: 1 givenname: Di orcidid: 0000-0002-3237-6032 surname: Zhu fullname: Zhu, Di organization: SpaceTimeLab, Department of Civil, Environmental and Geomatic Engineering, University College London – sequence: 2 givenname: Ximeng orcidid: 0000-0001-9923-7240 surname: Cheng fullname: Cheng, Ximeng organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University – sequence: 3 givenname: Fan orcidid: 0000-0002-3643-018X surname: Zhang fullname: Zhang, Fan organization: Senseable City Laboratory, Massachusetts Institute of Technology – sequence: 4 givenname: Xin surname: Yao fullname: Yao, Xin organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University – sequence: 5 givenname: Yong surname: Gao fullname: Gao, Yong organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University – sequence: 6 givenname: Yu orcidid: 0000-0002-0016-2902 surname: Liu fullname: Liu, Yu email: liuyu@urban.pku.edu.cn organization: Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University |
| BookMark | eNqFkM9PwyAUx4mZiXPuTzBp4rkTytpCvGgWfyWLHtQzAfq6oB1UaGf230u3efGgp8fjfT8v8DlFI-ssIHRO8Ixghi8JLXLGSDHLMOEzknNOsuwIjeN9llLMytHunKdD6ARNQzAKZ5Rxxsp8jJ5eWtkZ2STGduBb18TO2aQPxq4S7Wxlhj7OV2DBx-EGElltwAfpB8xC73el-3L-I5yh41o2AaaHOkFvd7evi4d0-Xz_uLhZpppS1qVQSFwWEjRXCmShGFQVn8-lzuqalrrKqSKKkxwwaCgVh7oqNcFznjGlZF7TCbrY7229--whdOLd9T6-M4iMloQURVmwmLrap7R3IXiohTbd7oOdl6YRBIvBofhxKAaH4uAw0vkvuvVmLf32X-56zxlbO7-WUUxTiU5uG-drL602QdC_V3wDofmNUg |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2020_3023730 crossref_primary_10_3390_rs15041038 crossref_primary_10_1155_2022_1817628 crossref_primary_10_1016_j_measurement_2023_113019 crossref_primary_10_1016_j_rse_2021_112818 crossref_primary_10_3390_ijgi11010036 crossref_primary_10_1016_j_jag_2025_104571 crossref_primary_10_1109_JSTARS_2025_3547364 crossref_primary_10_3390_rs13173533 crossref_primary_10_1080_13658816_2024_2347316 crossref_primary_10_1080_13658816_2024_2426067 crossref_primary_10_3390_ijgi12080347 crossref_primary_10_1080_10106049_2022_2063413 crossref_primary_10_1109_LGRS_2024_3403835 crossref_primary_10_1038_s41598_024_72807_z crossref_primary_10_3390_s22207772 crossref_primary_10_3390_ijgi11100527 crossref_primary_10_1371_journal_pone_0242010 crossref_primary_10_3390_ijgi9120734 crossref_primary_10_1017_eds_2023_1 crossref_primary_10_1080_13658816_2023_2275160 crossref_primary_10_1111_tgis_12965 crossref_primary_10_1080_10106049_2023_2252389 crossref_primary_10_3390_rs14051166 crossref_primary_10_1109_TGRS_2024_3360489 crossref_primary_10_1109_JSTARS_2024_3409697 crossref_primary_10_1109_TNET_2021_3136707 crossref_primary_10_1007_s11004_023_10125_2 crossref_primary_10_3390_app15116113 crossref_primary_10_1080_13658816_2024_2344186 crossref_primary_10_1080_13658816_2024_2414409 crossref_primary_10_1007_s42044_021_00089_z crossref_primary_10_1016_j_compgeo_2025_107177 crossref_primary_10_1016_j_scitotenv_2022_153948 crossref_primary_10_1016_j_earscirev_2022_104191 crossref_primary_10_3390_rs15020305 crossref_primary_10_1016_j_cageo_2022_105085 crossref_primary_10_1080_13658816_2024_2358052 crossref_primary_10_1080_10106049_2025_2471087 crossref_primary_10_1080_23729333_2019_1615729 crossref_primary_10_1080_13658816_2025_2508840 crossref_primary_10_1016_j_jag_2023_103496 crossref_primary_10_1016_j_spasta_2024_100862 crossref_primary_10_1109_TGRS_2024_3408793 crossref_primary_10_3390_rs13040676 crossref_primary_10_1016_j_buildenv_2022_109477 crossref_primary_10_1016_j_jag_2022_102936 crossref_primary_10_1057_s41599_025_05545_w crossref_primary_10_3390_ijgi10090619 crossref_primary_10_1007_s11442_022_2013_6 crossref_primary_10_1080_24694452_2023_2206469 crossref_primary_10_1016_j_healthplace_2024_103411 crossref_primary_10_1007_s00521_024_09893_7 crossref_primary_10_1080_13658816_2022_2147530 crossref_primary_10_3390_ijgi12050181 crossref_primary_10_1016_j_eswa_2025_128427 crossref_primary_10_1080_13658816_2020_1768260 crossref_primary_10_1109_TITS_2021_3110268 crossref_primary_10_1111_tgis_12933 crossref_primary_10_1080_13658816_2022_2055036 crossref_primary_10_1109_JSTARS_2023_3288296 crossref_primary_10_1080_13658816_2023_2268665 crossref_primary_10_3390_jmse12020228 crossref_primary_10_3390_rs14051233 crossref_primary_10_1016_j_isprsjprs_2022_04_028 crossref_primary_10_3390_a13030061 crossref_primary_10_3390_s22030745 crossref_primary_10_3390_su14159056 crossref_primary_10_3390_ijgi10090600 crossref_primary_10_1016_j_cageo_2023_105482 crossref_primary_10_1007_s10707_021_00454_x crossref_primary_10_1111_tgis_12915 crossref_primary_10_1038_s41598_023_49343_3 crossref_primary_10_1111_cgf_14941 crossref_primary_10_1016_j_neucom_2025_131181 crossref_primary_10_1016_j_spasta_2023_100743 crossref_primary_10_3390_math11061522 crossref_primary_10_1111_jen_13455 crossref_primary_10_3390_rs13163089 crossref_primary_10_1016_j_rse_2025_114900 crossref_primary_10_1117_1_JRS_19_014504 crossref_primary_10_1080_13658816_2022_2119476 crossref_primary_10_3390_agronomy14050938 crossref_primary_10_1080_13658816_2024_2391969 crossref_primary_10_3390_rs14051206 crossref_primary_10_3233_ICA_240732 crossref_primary_10_1016_j_scitotenv_2024_175787 crossref_primary_10_1007_s10489_024_05913_0 crossref_primary_10_1016_j_jag_2022_102734 crossref_primary_10_1080_13658816_2025_2512219 crossref_primary_10_1016_j_envsoft_2025_106338 crossref_primary_10_1080_17489725_2021_1917710 crossref_primary_10_1109_MGRS_2023_3343968 crossref_primary_10_1109_TGRS_2024_3423716 crossref_primary_10_3390_ijgi11050311 crossref_primary_10_1007_s00704_025_05637_2 crossref_primary_10_1016_j_buildenv_2023_110211 crossref_primary_10_1007_s13131_021_1974_0 crossref_primary_10_1016_j_compenvurbsys_2024_102106 crossref_primary_10_1371_journal_pone_0289286 crossref_primary_10_3390_rs15071954 crossref_primary_10_1016_j_jag_2023_103338 crossref_primary_10_1109_JSTARS_2025_3594062 crossref_primary_10_1007_s12145_024_01381_9 crossref_primary_10_1016_j_jag_2025_104461 crossref_primary_10_1016_j_rse_2021_112381 crossref_primary_10_1016_j_isprsjprs_2025_02_007 crossref_primary_10_3390_rs11232829 |
| Cites_doi | 10.1007/BF00889887 10.1016/j.neunet.2014.09.003 10.1007/s10040-004-0432-3 10.1111/j.1538-4632.1995.tb00338.x 10.1068/a301873 10.1016/j.ecoinf.2010.12.003 10.1007/978-3-642-01976-0_5 10.1080/13658816.2017.1413192 10.1016/B978-008044910-4.00530-7 10.1016/j.spasta.2015.04.004 10.1109/CVPR.2015.7298965 10.1111/j.1467-8306.2004.00424.x 10.1111/j.1538-4632.1981.tb00731.x 10.1109/TPAMI.2016.2644615 10.1068/a250383 10.1016/j.spasta.2015.05.008 10.1016/j.cageo.2007.05.001 10.1080/13658810802467969 10.2113/gsecongeo.58.8.1246 10.1002/2017WR022148 10.1002/9781118662953 10.1073/pnas.0805845106 10.1038/nature14539 10.5194/isprsarchives-XLI-B3-247-2016 10.1080/02693799008941549 10.1080/24694452.2017.1352480 10.4135/9780857020130.n9 10.2307/143141 10.1111/1467-9876.00113 10.1016/j.patcog.2018.11.028 |
| ContentType | Journal Article |
| Copyright | 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 2019 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1080/13658816.2019.1599122 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1362-3087 1365-8824 |
| EndPage | 758 |
| ExternalDocumentID | 10_1080_13658816_2019_1599122 1599122 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41625003; 41830645 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2017YFB0503602 |
| GroupedDBID | -~X ..I .4S .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAIKC AAJMT AALDU AAMIU AAMNW AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABLIJ ABPAQ ABPEM ABRLO ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACHQT ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AFKVX AFRAH AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EAP EBO EBS EDO EMK EPL ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P KYCEM LJTGL M4Z MM- NA5 NX~ O9- PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TH9 TNC TQWBC TTHFI TUROJ TUS TWF UT5 UU3 ZCA ZGOLN ~02 ~S~ AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c338t-e6a076aec9bbea6b8edd944ac2ff37cd53b1b915e0ece7b9efd7c104928bba5f3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 124 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467089500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1365-8816 |
| IngestDate | Sun Sep 07 03:47:30 EDT 2025 Sat Nov 29 06:05:14 EST 2025 Tue Nov 18 22:33:33 EST 2025 Mon Oct 20 23:48:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-e6a076aec9bbea6b8edd944ac2ff37cd53b1b915e0ece7b9efd7c104928bba5f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3643-018X 0000-0001-9923-7240 0000-0002-0016-2902 0000-0002-3237-6032 |
| PQID | 2371166768 |
| PQPubID | 53147 |
| PageCount | 24 |
| ParticipantIDs | crossref_citationtrail_10_1080_13658816_2019_1599122 proquest_journals_2371166768 informaworld_taylorfrancis_310_1080_13658816_2019_1599122 crossref_primary_10_1080_13658816_2019_1599122 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-02 |
| PublicationDateYYYYMMDD | 2020-04-02 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of geographical information science : IJGIS |
| PublicationYear | 2020 |
| Publisher | Taylor & Francis Taylor & Francis LLC |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
| References | Salimans T. (CIT0044) 2016 CIT0050 CIT0030 CIT0052 CIT0010 CIT0032 CIT0031 CIT0053 CIT0012 Gauthier J. (CIT0016) 2014 CIT0034 CIT0011 CIT0033 Fotheringham A.S. (CIT0014) 2008 Guã©Rin E. (CIT0020) 2017; 36 Yosinski J. (CIT0051) 2014 CIT0036 CIT0013 CIT0038 CIT0015 CIT0037 CIT0018 CIT0039 Burrough P.A. (CIT0007) 1999; 15 CIT0041 CIT0042 CIT0001 CIT0023 CIT0045 CIT0022 Goodchild M.F. (CIT0017) 2004; 94 Hedayat A. (CIT0021) 1991 Thompson S.K. (CIT0047) 1996 CIT0003 CIT0025 CIT0005 Cochran W.G. (CIT0009) 1963 CIT0027 CIT0049 CIT0004 CIT0048 CIT0006 CIT0028 CIT0008 |
| References_xml | – ident: CIT0010 doi: 10.1007/BF00889887 – ident: CIT0045 doi: 10.1016/j.neunet.2014.09.003 – ident: CIT0042 – volume-title: Design and inference in finite population sampling year: 1991 ident: CIT0021 – ident: CIT0037 doi: 10.1007/s10040-004-0432-3 – ident: CIT0001 doi: 10.1111/j.1538-4632.1995.tb00338.x – ident: CIT0012 doi: 10.1068/a301873 – ident: CIT0031 doi: 10.1016/j.ecoinf.2010.12.003 – ident: CIT0013 doi: 10.1007/978-3-642-01976-0_5 – ident: CIT0053 doi: 10.1080/13658816.2017.1413192 – start-page: 2234 volume-title: Advances in Neural Information Processing Systems year: 2016 ident: CIT0044 – ident: CIT0025 – ident: CIT0028 doi: 10.1016/B978-008044910-4.00530-7 – ident: CIT0032 doi: 10.1016/j.spasta.2015.04.004 – ident: CIT0033 doi: 10.1109/CVPR.2015.7298965 – ident: CIT0050 – volume: 94 start-page: 709714 issue: 4 year: 2004 ident: CIT0017 publication-title: Annals of the Association of American Geographers doi: 10.1111/j.1467-8306.2004.00424.x – ident: CIT0023 doi: 10.1111/j.1538-4632.1981.tb00731.x – start-page: 3320 volume-title: Advances in Neural Information Processing Systems year: 2014 ident: CIT0051 – ident: CIT0006 doi: 10.1109/TPAMI.2016.2644615 – ident: CIT0018 doi: 10.1068/a250383 – ident: CIT0003 doi: 10.1016/j.spasta.2015.05.008 – ident: CIT0022 doi: 10.1016/j.cageo.2007.05.001 – ident: CIT0039 – ident: CIT0049 doi: 10.1080/13658810802467969 – volume-title: The SAGE handbook of spatial analysis year: 2008 ident: CIT0014 – ident: CIT0038 doi: 10.2113/gsecongeo.58.8.1246 – ident: CIT0027 doi: 10.1002/2017WR022148 – ident: CIT0036 doi: 10.1002/9781118662953 – ident: CIT0005 doi: 10.1073/pnas.0805845106 – ident: CIT0030 doi: 10.1038/nature14539 – ident: CIT0008 doi: 10.5194/isprsarchives-XLI-B3-247-2016 – volume: 36 issue: 6 year: 2017 ident: CIT0020 publication-title: Acm Transactions on Graphics – ident: CIT0041 doi: 10.1080/02693799008941549 – ident: CIT0015 doi: 10.1080/24694452.2017.1352480 – volume: 15 start-page: 357 issue: 3 year: 1999 ident: CIT0007 publication-title: Landscape & Urban Planning – volume-title: Adaptive sampling year: 1996 ident: CIT0047 – volume-title: Sampling techniques year: 1963 ident: CIT0009 – start-page: 5. Stanford, CA volume-title: Class project for Stanford CS231N: convolutional neural networks for visual recognition, Winter semester year: 2014 ident: CIT0016 – ident: CIT0004 doi: 10.4135/9780857020130.n9 – ident: CIT0034 – ident: CIT0048 doi: 10.2307/143141 – ident: CIT0011 doi: 10.1111/1467-9876.00113 – ident: CIT0052 doi: 10.1016/j.patcog.2018.11.028 |
| SSID | ssib023898875 ssj0001015 ssib000159086 |
| Score | 2.617612 |
| Snippet | Spatial interpolation is a traditional geostatistical operation that aims at predicting the attribute values of unobserved locations given a sample of data... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 735 |
| SubjectTerms | Artificial intelligence Coders Deep learning encoder-decoder Encoders-Decoders generative adversarial networks Geostatistics Heterogeneity Interpolation Machine learning Mathematical models Neural networks Spatial data Spatial interpolation spatial prediction Statistical analysis Statistical models |
| Title | Spatial interpolation using conditional generative adversarial neural networks |
| URI | https://www.tandfonline.com/doi/abs/10.1080/13658816.2019.1599122 https://www.proquest.com/docview/2371166768 |
| Volume | 34 |
| WOSCitedRecordID | wos000467089500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis customDbUrl: eissn: 1362-3087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001015 issn: 1365-8816 databaseCode: TFW dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yBL34W5xOycFr59KmTXMUcXgaHibuVvLSZA5kiq2C_715aTo3RHbQU09J6MvL-xG-fB8hl1keG52BjqxWMuIxiEgZJSIjLIdBolNmSi82IUajfDKR9wFNWAVYJfbQtiGK8LEaD7eCqkXEXSEyK88ZAgyY7Lt8LFmMUdilftQwGA8flwoY1PReJFyXn6Q7Vd8FsnPItH2ZhVO2b3x-W2Ule61wm_6I5T5BDXf_4df2yE6oTul14077ZMPMD8hWEEp_-jwkI5Qwdi5LZ40-V4Oko4ien1LXWpez5m6RTj2dNcZSqlDzuVLo6RTpM_3Hg8-rI_IwvB3f3EVBkiHSrpetI5OpgciU0RLAqAxyU5aSc6VjaxOhyzQBBpKlZmC0ESCNLYV2HZ-McwCV2uSYdOYvc3NCaOoKRZUIUKXSHLhQoNMUuOV5ZgWA7RLemrrQga8cZTOeCxZoTVtjFWisIhirS_qLYa8NYce6AXJ5H4va35TYRtakSNaM7bWbXoSzXxVxIhhD6HB--oepz8h2jK09goTiHunUb-_mnGzqj3pWvV14L_8CdcH4Hg |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5ShXrxLVar7sHr1mY32WyOIpaKtaeKvYVMNqkFqdJWwX9vZh-1RcSDnvaUhJ1M5hG-fB8hF0kaWZOACZ3RMmQRiFBbLUIrHIN2bDi1WS42Ifr9dDiUy29hEFaJPbQriCLyWI2HGy-jK0jcJUKz0pQiwoDKlk_IkkY-DK9zn2vRywedx6USBlW9FynXZyjpz9VXiexdkldvs3DO6pXPT8us5K8VdtNv0TxPUZ3t__i5HbJVFqjBVeFRu2TNTvZIvdRKf_rYJ31UMfZeG4wLia4CTBcggH4U-O46GxfXi8EoZ7TGcBpolH2eaXT2ABk080-OP58dkIfOzeC6G5aqDKHx7ew8tIlui0RbIwGsTiC1WSYZ0yZyLhYm4zFQkJTbtjVWgLQuE8Y3fTJKATR38SGpTV4m9ogE3NeKOhagM20YMKHBcA7MsTRxAsA1CKtsrUxJWY7KGc-KlsymlbEUGkuVxmqQ1mLYa8HZ8dsAubyRap5flrhC2UTFv4xtVruuyuM_U1EsKEX0cHr8h6nPSb07uO-p3m3_7oRsRtjpI2YoapLafPpmT8mGeZ-PZ9Oz3OU_ATF0_Ek |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yRb34W5xO7cFrdWnTpjmKOhRl7DBxt5CXJnMgU-wU_O_Na9PpENlBTz0loS8v70f48n2EnKRZZHQKOrRaiZBFwENlFA8NtwzasU6oyUuxCd7tZoOB6Hk0YeFhldhD24oooozVeLhfclsj4s4QmZVlFAEGVJy6fCxo5KLwoiudU-y_-p2HbxUMinpPM65LUMIdq68K2XlkUj_NwjnrRz6_LTOTvmbITX8E8zJDddb_4d82yJovT4Pzyp82yYIZb5EVr5T--LFNuqhh7Hw2GFUCXRWULkD4_DBwvXU-qi4Xg2HJZ43BNFAo-lwodPUA-TPLT4k-L3bIfeeqf3Edek2GULtmdhKaVLV5qowWAEalkJk8F4wpHVkbc50nMVAQNDFtow0HYWzOtWv5RJQBqMTGu6Qxfh6bPRIkrlJUMQeVK82AcQU6SYBZlqWWA9gmYbWppfaE5aib8SSp5zWtjSXRWNIbq0lOp8NeKsaOeQPE932Uk_KqxFa6JjKeM7ZVb7r0h7-QUcwpRexwtv-HqY_Jcu-yI-9uurcHZDXCNh8BQ1GLNCavb-aQLOn3yah4PSod_hM4BPr6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+interpolation+using+conditional+generative+adversarial+neural+networks&rft.jtitle=International+journal+of+geographical+information+science+%3A+IJGIS&rft.au=Zhu%2C+Di&rft.au=Cheng%2C+Ximeng&rft.au=Zhang%2C+Fan&rft.au=Yao%2C+Xin&rft.date=2020-04-02&rft.pub=Taylor+%26+Francis+LLC&rft.issn=1365-8816&rft.eissn=1365-8824&rft.volume=34&rft.issue=4&rft.spage=735&rft.epage=758&rft_id=info:doi/10.1080%2F13658816.2019.1599122&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8816&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8816&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8816&client=summon |