Fuzzy multi-objective optimization for optimum allocation in multivariate stratified sampling with quadratic cost and parabolic fuzzy numbers

This article deals with the uncertainties in a multivariate stratified sampling problem. The uncertain parameters of the problem, such as stratum standard deviations, measurement costs, travel costs and total budget of the survey, are considered as parabolic fuzzy numbers and the problem is formulat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of statistical computation and simulation Ročník 87; číslo 12; s. 2372 - 2383
Hlavní autoři: Gupta, Neha, Bari, Abdul
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 13.08.2017
Taylor & Francis Ltd
Témata:
ISSN:0094-9655, 1563-5163
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article deals with the uncertainties in a multivariate stratified sampling problem. The uncertain parameters of the problem, such as stratum standard deviations, measurement costs, travel costs and total budget of the survey, are considered as parabolic fuzzy numbers and the problem is formulated as a fuzzy multi-objective nonlinear programming problem with quadratic cost function. Using α-cut, parabolic fuzzy numbers are defuzzified and then the compromise allocations of the problem are obtained by fuzzy programming for a prescribed value of α. To demonstrate the utility of the proposed problem a numerical example is solved with the help of [LINGO User?s Guid. Lindo Systems Inc., 1415 North Dayton Street, Chicago,Illinois-60622, (USA), 2013] software and the derived compromise optimum allocation is compared with deterministic and proportional allocations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0094-9655
1563-5163
DOI:10.1080/00949655.2017.1332195