Using airborne lidar and machine learning to predict visibility across diverse vegetation and terrain conditions
Visibility analyses, used in many disciplines, rely on viewshed algorithms that map locations visible to an observer based on a given surface model. Mapping continuous visibility over broad extents is uncommon due to extreme computational expense. This study introduces a novel method for spatially-e...
Saved in:
| Published in: | International journal of geographical information science : IJGIS Vol. 37; no. 8; pp. 1728 - 1764 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
03.08.2023
Taylor & Francis LLC |
| Subjects: | |
| ISSN: | 1365-8816, 1362-3087, 1365-8824 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Visibility analyses, used in many disciplines, rely on viewshed algorithms that map locations visible to an observer based on a given surface model. Mapping continuous visibility over broad extents is uncommon due to extreme computational expense. This study introduces a novel method for spatially-exhaustive visibility mapping using airborne lidar and random forests that requires only a sparse sample of viewsheds. In 24 topographically and vegetatively diverse landscapes across the contiguous US, 1000 random point viewsheds were generated at four different observation radii (125 m, 250 m, 500 m, 1000 m), using a 1 m resolution lidar-derived digital surface model. Visibility index - the proportion of visible area to total area - was used as the target variable for site-scale and national-scale modeling, which used a diverse set of 146 terrain- and vegetation-based 10 m resolution metrics as predictors. Variables based on vegetation, especially those based on local neighborhoods, were more important than those based on terrain. Visibility at shorter distances was more accurately estimated. National-scale models trained on a wider range of vegetation and terrain conditions resulted in improved R
2
, although at some sites error increased compared to site-scale models. Results from an independent test site demonstrate potential for application of this methodology to diverse landscapes. |
|---|---|
| AbstractList | Visibility analyses, used in many disciplines, rely on viewshed algorithms that map locations visible to an observer based on a given surface model. Mapping continuous visibility over broad extents is uncommon due to extreme computational expense. This study introduces a novel method for spatially-exhaustive visibility mapping using airborne lidar and random forests that requires only a sparse sample of viewsheds. In 24 topographically and vegetatively diverse landscapes across the contiguous US, 1000 random point viewsheds were generated at four different observation radii (125 m, 250 m, 500 m, 1000 m), using a 1 m resolution lidar-derived digital surface model. Visibility index – the proportion of visible area to total area – was used as the target variable for site-scale and national-scale modeling, which used a diverse set of 146 terrain- and vegetation-based 10 m resolution metrics as predictors. Variables based on vegetation, especially those based on local neighborhoods, were more important than those based on terrain. Visibility at shorter distances was more accurately estimated. National-scale models trained on a wider range of vegetation and terrain conditions resulted in improved R2, although at some sites error increased compared to site-scale models. Results from an independent test site demonstrate potential for application of this methodology to diverse landscapes. Visibility analyses, used in many disciplines, rely on viewshed algorithms that map locations visible to an observer based on a given surface model. Mapping continuous visibility over broad extents is uncommon due to extreme computational expense. This study introduces a novel method for spatially-exhaustive visibility mapping using airborne lidar and random forests that requires only a sparse sample of viewsheds. In 24 topographically and vegetatively diverse landscapes across the contiguous US, 1000 random point viewsheds were generated at four different observation radii (125 m, 250 m, 500 m, 1000 m), using a 1 m resolution lidar-derived digital surface model. Visibility index - the proportion of visible area to total area - was used as the target variable for site-scale and national-scale modeling, which used a diverse set of 146 terrain- and vegetation-based 10 m resolution metrics as predictors. Variables based on vegetation, especially those based on local neighborhoods, were more important than those based on terrain. Visibility at shorter distances was more accurately estimated. National-scale models trained on a wider range of vegetation and terrain conditions resulted in improved R 2 , although at some sites error increased compared to site-scale models. Results from an independent test site demonstrate potential for application of this methodology to diverse landscapes. |
| Author | Mistick, Katherine A. Thompson, Matthew P. Campbell, Michael J. Dennison, Philip E. |
| Author_xml | – sequence: 1 givenname: Katherine A. surname: Mistick fullname: Mistick, Katherine A. organization: Department of Geography, University of Utah – sequence: 2 givenname: Michael J. surname: Campbell fullname: Campbell, Michael J. organization: Department of Geography, University of Utah – sequence: 3 givenname: Matthew P. surname: Thompson fullname: Thompson, Matthew P. organization: Rocky Mountain Research Station, USDA Forest Service – sequence: 4 givenname: Philip E. surname: Dennison fullname: Dennison, Philip E. organization: Department of Geography, University of Utah |
| BookMark | eNqFkFFLHDEUhUNR0Ko_QQj4PNuZJDO5Q18Uqa0g-KLP4U4msSmzyXoTt-y_78yuffGhhUDC4Tvn3pzP7Cim6Bi7bOpVU0P9pZFdC9B0K1ELuRJCKCWaT-x01kUla9BH-3dbLdAJu8g5DDMJPYBuT9nmOYf4wjHQkCg6PoURiWMc-Rrtz7AoDikuTEl8Q24MtvBtmFPCFMqOo6WUMx_D1lF2fOteXMESUtyHFEeEIXKb4hgWNZ-zY49Tdhfv9xl7vvv2dPujenj8fn9781BZKaFUowcFymMzQuMHKTqnUIu66-cjtG7Ba9EjSuxUK_Ugeosalbeg_eBQ1fKMXR1yN5Re31wu5ld6oziPNAIkAKhW9zP19UDtf0HOGxsO65d578k0tVlaNn9bNkvL5r3l2d1-cG8orJF2__VdH3wh-kRr_J1oGk3B3ZTIE0YbspH_jvgDksiXOQ |
| CitedBy_id | crossref_primary_10_1071_WF24065 crossref_primary_10_1016_j_ijdrr_2025_105714 crossref_primary_10_1016_j_cities_2024_105536 crossref_primary_10_1016_j_landurbplan_2025_105389 |
| Cites_doi | 10.1109/JSTARS.2014.2326252 10.1007/978-3-319-24277-4 10.1016/j.rala.2021.09.005 10.3133/cir1399 10.1002/widm.1301 10.1016/j.srs.2021.100034 10.3390/app12178654 10.1145/1653771.1653791 10.1016/j.envsoft.2017.06.012 10.3133/fs20123020 10.3390/fire5050151 10.1016/j.rse.2018.02.046 10.1016/j.jasrep.2017.09.033 10.1016/j.jpdc.2015.07.001 10.1016/j.rse.2020.111853 10.1002/ecy.2109 10.1080/00049158.2016.1218265 10.1080/13658816.2012.677538 10.3390/rs11141685 10.1007/s41064-021-00141-4 10.1016/j.jag.2021.102478 10.1080/01431161.2020.1752952 10.1016/j.apgeog.2019.02.002 10.1007/s10344-020-01390-1 10.1111/2041-210X.12902 10.1029/EO081i048p00583 10.1016/j.landurbplan.2012.12.004 10.1006/jasc.1997.0197 10.1080/01431161.2018.1541110 10.1111/ecog.02881 10.1016/j.jenvman.2007.01.064 10.1093/forestry/cpac055 10.1016/j.landurbplan.2016.04.004 10.1080/13658816.2013.767460 10.1016/j.rse.2019.111347 10.1016/j.landurbplan.2017.10.010 10.1109/GeoInformatics.2011.5980830 10.1038/s41597-020-0444-4 10.3390/rs70810017 10.1111/2041-210X.13385 10.1006/jasc.1996.0142 10.1016/j.jasrep.2022.103437 10.1016/j.landurbplan.2022.104424 10.1080/17538947.2010.533201 10.1109/TELSKS.2013.6704407 10.1016/j.landusepol.2008.10.009 10.1111/2041-210X.13783 10.2174/1874398601003010017 10.1068/b30101 10.1016/j.rse.2021.112511 10.2307/40035363 10.1080/17538947.2011.555565 10.1093/biosci/biu189 10.1007/s11146-012-9365-0 10.1080/13658816.2020.1844207 10.1016/j.isprsjprs.2016.01.011 10.1007/s10661-017-6008-1 10.1111/tgis.12457 10.1016/j.scitotenv.2020.143050 10.1016/j.rse.2020.112165 10.1080/13658816.2010.512273 10.1016/j.rse.2018.06.023 10.1080/713811741 10.1046/j.1526-100x.2000.80065.x 10.1080/13658816.2012.692372 |
| ContentType | Journal Article |
| Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1080/13658816.2023.2224421 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1362-3087 1365-8824 |
| EndPage | 1764 |
| ExternalDocumentID | 10_1080_13658816_2023_2224421 2224421 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: National Science Foundation |
| GroupedDBID | -~X ..I .4S .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAIKC AAJMT AALDU AAMIU AAMNW AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABLIJ ABPAQ ABPEM ABRLO ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACHQT ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AFKVX AFRAH AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EAP EBO EBS EDO EMK EPL ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P KYCEM LJTGL M4Z MM- NA5 NX~ O9- PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TH9 TNC TQWBC TTHFI TUROJ TUS TWF UT5 UU3 ZCA ZGOLN ~02 ~S~ AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c338t-df8484fa1d81fb326e4a7206906927758f729aa3a64537b29ca7a4fc87fbea403 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001024164400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1365-8816 |
| IngestDate | Tue Aug 12 16:41:54 EDT 2025 Sat Nov 29 06:05:15 EST 2025 Tue Nov 18 22:19:44 EST 2025 Mon Oct 20 23:45:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-df8484fa1d81fb326e4a7206906927758f729aa3a64537b29ca7a4fc87fbea403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2838884579 |
| PQPubID | 53147 |
| PageCount | 37 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_13658816_2023_2224421 proquest_journals_2838884579 crossref_citationtrail_10_1080_13658816_2023_2224421 crossref_primary_10_1080_13658816_2023_2224421 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-03 |
| PublicationDateYYYYMMDD | 2023-08-03 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of geographical information science : IJGIS |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis LLC |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
| References | Franklin W.R. (e_1_3_4_19_1) 1994; 2 e_1_3_4_3_1 e_1_3_4_61_1 e_1_3_4_63_1 e_1_3_4_9_1 e_1_3_4_42_1 e_1_3_4_80_1 e_1_3_4_7_1 e_1_3_4_40_1 e_1_3_4_82_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_46_1 e_1_3_4_69_1 e_1_3_4_21_1 e_1_3_4_44_1 e_1_3_4_27_1 e_1_3_4_65_1 e_1_3_4_25_1 e_1_3_4_48_1 e_1_3_4_67_1 Wheatley D. (e_1_3_4_75_1) 1995 e_1_3_4_29_1 Wheatley D. (e_1_3_4_76_1) 2000 e_1_3_4_72_1 e_1_3_4_74_1 Zong X. (e_1_3_4_84_1) 2022 e_1_3_4_53_1 e_1_3_4_30_1 e_1_3_4_51_1 e_1_3_4_70_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_59_1 e_1_3_4_55_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_17_1 e_1_3_4_38_1 e_1_3_4_78_1 e_1_3_4_15_1 e_1_3_4_36_1 e_1_3_4_57_1 e_1_3_4_4_1 e_1_3_4_2_1 e_1_3_4_62_1 e_1_3_4_83_1 e_1_3_4_64_1 e_1_3_4_8_1 e_1_3_4_20_1 e_1_3_4_41_1 e_1_3_4_6_1 e_1_3_4_60_1 e_1_3_4_81_1 e_1_3_4_24_1 e_1_3_4_45_1 e_1_3_4_22_1 e_1_3_4_43_1 e_1_3_4_28_1 e_1_3_4_49_1 e_1_3_4_66_1 e_1_3_4_26_1 e_1_3_4_47_1 e_1_3_4_68_1 e_1_3_4_73_1 e_1_3_4_31_1 e_1_3_4_52_1 e_1_3_4_50_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_58_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_54_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_77_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_56_1 e_1_3_4_79_1 e_1_3_4_18_1 van Kreveld M. (e_1_3_4_71_1) 1996 |
| References_xml | – ident: e_1_3_4_36_1 – ident: e_1_3_4_69_1 doi: 10.1109/JSTARS.2014.2326252 – ident: e_1_3_4_77_1 doi: 10.1007/978-3-319-24277-4 – start-page: 171 volume-title: Archaeology and GIS: a European perspective year: 1995 ident: e_1_3_4_75_1 – ident: e_1_3_4_52_1 doi: 10.1016/j.rala.2021.09.005 – ident: e_1_3_4_13_1 – ident: e_1_3_4_68_1 doi: 10.3133/cir1399 – ident: e_1_3_4_56_1 doi: 10.1002/widm.1301 – ident: e_1_3_4_67_1 doi: 10.1016/j.srs.2021.100034 – ident: e_1_3_4_81_1 doi: 10.3390/app12178654 – ident: e_1_3_4_18_1 doi: 10.1145/1653771.1653791 – ident: e_1_3_4_11_1 doi: 10.1016/j.envsoft.2017.06.012 – ident: e_1_3_4_74_1 – ident: e_1_3_4_27_1 doi: 10.3133/fs20123020 – ident: e_1_3_4_43_1 doi: 10.3390/fire5050151 – ident: e_1_3_4_72_1 doi: 10.1016/j.rse.2018.02.046 – ident: e_1_3_4_47_1 doi: 10.1016/j.jasrep.2017.09.033 – ident: e_1_3_4_8_1 doi: 10.1016/j.jpdc.2015.07.001 – ident: e_1_3_4_6_1 doi: 10.1016/j.rse.2020.111853 – ident: e_1_3_4_24_1 doi: 10.1002/ecy.2109 – ident: e_1_3_4_41_1 doi: 10.1080/00049158.2016.1218265 – ident: e_1_3_4_70_1 doi: 10.1080/13658816.2012.677538 – ident: e_1_3_4_40_1 doi: 10.3390/rs11141685 – ident: e_1_3_4_46_1 doi: 10.1007/s41064-021-00141-4 – ident: e_1_3_4_23_1 – ident: e_1_3_4_83_1 doi: 10.1016/j.jag.2021.102478 – ident: e_1_3_4_29_1 – ident: e_1_3_4_65_1 doi: 10.1080/01431161.2020.1752952 – ident: e_1_3_4_20_1 – ident: e_1_3_4_44_1 doi: 10.1016/j.apgeog.2019.02.002 – ident: e_1_3_4_51_1 doi: 10.1007/s10344-020-01390-1 – ident: e_1_3_4_2_1 doi: 10.1111/2041-210X.12902 – ident: e_1_3_4_16_1 doi: 10.1029/EO081i048p00583 – ident: e_1_3_4_42_1 – ident: e_1_3_4_9_1 doi: 10.1016/j.landurbplan.2012.12.004 – ident: e_1_3_4_35_1 doi: 10.1006/jasc.1997.0197 – ident: e_1_3_4_49_1 doi: 10.1080/01431161.2018.1541110 – ident: e_1_3_4_58_1 doi: 10.1111/ecog.02881 – ident: e_1_3_4_50_1 doi: 10.1016/j.jenvman.2007.01.064 – ident: e_1_3_4_22_1 doi: 10.1093/forestry/cpac055 – ident: e_1_3_4_80_1 doi: 10.1016/j.landurbplan.2016.04.004 – ident: e_1_3_4_45_1 doi: 10.1080/13658816.2013.767460 – ident: e_1_3_4_78_1 – ident: e_1_3_4_37_1 doi: 10.1016/j.rse.2019.111347 – volume-title: Beyond the map archaeology and spatial technologies year: 2000 ident: e_1_3_4_76_1 – ident: e_1_3_4_73_1 doi: 10.1016/j.landurbplan.2017.10.010 – ident: e_1_3_4_21_1 doi: 10.1109/GeoInformatics.2011.5980830 – ident: e_1_3_4_64_1 doi: 10.1038/s41597-020-0444-4 – ident: e_1_3_4_32_1 doi: 10.3390/rs70810017 – ident: e_1_3_4_38_1 doi: 10.1111/2041-210X.13385 – volume-title: Variations on sweep algorithms year: 1996 ident: e_1_3_4_71_1 – ident: e_1_3_4_55_1 – ident: e_1_3_4_17_1 doi: 10.1006/jasc.1996.0142 – ident: e_1_3_4_62_1 doi: 10.1016/j.jasrep.2022.103437 – volume: 2 start-page: 22 year: 1994 ident: e_1_3_4_19_1 article-title: Higher isn’t necessarily better: visibility algorithms and experiments publication-title: Advances in GIS Research – ident: e_1_3_4_63_1 – ident: e_1_3_4_28_1 doi: 10.1016/j.landurbplan.2022.104424 – ident: e_1_3_4_15_1 doi: 10.1080/17538947.2010.533201 – ident: e_1_3_4_66_1 doi: 10.1109/TELSKS.2013.6704407 – ident: e_1_3_4_61_1 doi: 10.1016/j.landusepol.2008.10.009 – ident: e_1_3_4_79_1 doi: 10.1111/2041-210X.13783 – ident: e_1_3_4_53_1 doi: 10.2174/1874398601003010017 – ident: e_1_3_4_12_1 doi: 10.1068/b30101 – ident: e_1_3_4_7_1 doi: 10.1016/j.rse.2021.112511 – ident: e_1_3_4_31_1 doi: 10.2307/40035363 – ident: e_1_3_4_57_1 – ident: e_1_3_4_10_1 doi: 10.1080/17538947.2011.555565 – ident: e_1_3_4_48_1 doi: 10.1093/biosci/biu189 – start-page: 1306 year: 2022 ident: e_1_3_4_84_1 article-title: LiDAR reveals a preference for intermediate visibility by a forest‐dwelling ungulate species publication-title: Journal of Animal Ecology – ident: e_1_3_4_26_1 doi: 10.1007/s11146-012-9365-0 – ident: e_1_3_4_60_1 doi: 10.1080/13658816.2020.1844207 – ident: e_1_3_4_4_1 doi: 10.1016/j.isprsjprs.2016.01.011 – ident: e_1_3_4_33_1 doi: 10.1007/s10661-017-6008-1 – ident: e_1_3_4_59_1 doi: 10.1111/tgis.12457 – ident: e_1_3_4_34_1 doi: 10.1016/j.scitotenv.2020.143050 – ident: e_1_3_4_54_1 doi: 10.1016/j.rse.2020.112165 – ident: e_1_3_4_3_1 doi: 10.1080/13658816.2010.512273 – ident: e_1_3_4_5_1 doi: 10.1016/j.rse.2018.06.023 – ident: e_1_3_4_39_1 doi: 10.1080/713811741 – ident: e_1_3_4_30_1 doi: 10.1046/j.1526-100x.2000.80065.x – ident: e_1_3_4_25_1 – ident: e_1_3_4_82_1 doi: 10.1080/13658816.2012.692372 – ident: e_1_3_4_14_1 |
| SSID | ssib023898875 ssj0001015 ssib000159086 |
| Score | 2.409473 |
| Snippet | Visibility analyses, used in many disciplines, rely on viewshed algorithms that map locations visible to an observer based on a given surface model. Mapping... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1728 |
| SubjectTerms | Algorithms Landscape Lidar Machine learning Mapping random forest Scale models Terrain Vegetation Viewshed Visibility Visibility maps |
| Title | Using airborne lidar and machine learning to predict visibility across diverse vegetation and terrain conditions |
| URI | https://www.tandfonline.com/doi/abs/10.1080/13658816.2023.2224421 https://www.proquest.com/docview/2838884579 |
| Volume | 37 |
| WOSCitedRecordID | wos001024164400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1362-3087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001015 issn: 1365-8816 databaseCode: TFW dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SBL34FqtVcvC6td0kTfYoYvFUPFTsbZluEi3UtmzXQv-9k2y2toj0oMddyIRkZjIzyTczhNwKsErE3ERMGAxQEtGKIIlFxDpGaZYJZqDlm03IXk8NBslzQBPOA6zSxdC2LBThz2qn3DCcV4i4O4fMUqrtAAYxa6KB49ynkqPpd6rZ776uOTCup_fK4KJ9SlCrvh1kFEhRZWY5klWOz2-zbFivjdqmP85yb6C6h_-wtCNyELxTel-K0zHZMZMTshcapb8vT8nMQwwojHKUnYmh45GGnOJ09MOjMvFPuGuhxZTOcvcMVFCXwO5BuEsKfmFUeziIoQvzFvCOnggy2bWsoBik6xJLdkZeuo_9h6coNG2IMox2i0hbxRW30NaqbYfoHBoOMvb1kJNYYnRi0Z0HYNDhgslhnGQggdtMSTs0wFvsnNQm04m5IBTpxBYDOgDJuXSxnbbIMs20RclinTrhFTPSLFQ0d401xmk7FD6ttjN125mG7ayT5mrYrCzpsW1Ass7ptPB3KbZsfJKyLWMblVik4XSYp-jSKaW4kMnlH0hfkX336dGIrEFqRf5prslutihG8_zG68EXBr3_QQ |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QIMGFN-JNDlwLW5Ms6REhpiHGTkPsFmVNApNgTKUg8e-x03QMIcQBrq3iqLET2-nnz4ScCOOVSLlLmHCQoGSikZgsFQlrOWVZLpgzjdBsQvZ6ajDIZmthEFaJObSviCLCWY2bGy-ja0jcGUKzlGoiwiBlp-DhOMda8gUBvhb58_vtu5kQBrt6T10ueKgM9tVniAwmKeraLJRZV_n8NM0X__WF3fTbaR5cVHv1Pz5ujazEAJWeVxa1TubceIMsxV7pD--bZBJQBtSMCjCfsaOPI2sKCvPRpwDMhCfxuoWWz3RS4J-gkmINe8DhvlMTvozagAhx9M3dR8hjEAJ6xq4VFPJ0W8HJtsht-7J_0Uli34Ykh4S3TKxXXHFvmlY1_RDiQ8eNTAMlcpZKSFA8RPTGMNPigslhmuVGGu5zJf3QGd5g22R-_Dx2O4SCnNRDTmeM5Fxiemc96Mwy68G4WGuX8FobOo-k5thb41E3I_dpvZwal1PH5dwlp9Nhk4rV47cB2ayqdRmuU3zV-0SzX8Ye1Hah4wHxoiGqU0pxIbO9P4g-Jkud_k1Xd6961_tkGV8FcCI7IPNl8eoOyWL-Vo5eiqOwKT4AOx8Deg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QQMCFN-JNDlwLW5Ms6REBFQg07TAEtyhrEpg0ytSVSfv3OGnKQwjtANdWcZTYif21n22ETpiygsXURIQZACgJa0YqiVlE2kZokjFiVNM3m-Cdjnh8TLqBTTgOtEqHoW1VKMLf1e5wj7StGXFnjpklRMsRDGJyCg6OUpdKPg-hc9sZeS99-BLBuKbeHx4XHFQCx-ozQgaLZHVqlpNZJ_n8Ns039_WtuOmPy9x7qHT1H9a2hlZCeIrPK3taR3Mm30BLoVP683QTjTzHAKtBAcaTGzwcaFVgmA6_eFomPAkfW3D5ikeF-w9UYpfB7lm4U6z8wrD2fBCDJ-YpEB69ENCy61mBAaXriky2he7Tq97FdRS6NkQZwN0y0lZQQa1qadGyfYgODVU89gWRk5gDPLEQzytFVJsywvtxkimuqM0Et32jaJNso0b-mpsdhEFObAHRKcUp5Q7caQsq00RbMC3S3kW0VobMQklz11ljKFuh8mm9ndJtpwzbuYtOP4aNqpoeswYkXzUtS_8xxVadTySZMfagNgsZroexhJhOCEEZT_b-IPoYLXYvU3l307ndR8vujWcmkgPUKIs3c4gWskk5GBdH_ki8AyAnAiw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+airborne+lidar+and+machine+learning+to+predict+visibility+across+diverse+vegetation+and+terrain+conditions&rft.jtitle=International+journal+of+geographical+information+science+%3A+IJGIS&rft.au=Mistick%2C+Katherine+A.&rft.au=Campbell%2C+Michael+J.&rft.au=Thompson%2C+Matthew+P.&rft.au=Dennison%2C+Philip+E.&rft.date=2023-08-03&rft.pub=Taylor+%26+Francis&rft.issn=1365-8816&rft.eissn=1362-3087&rft.volume=37&rft.issue=8&rft.spage=1728&rft.epage=1764&rft_id=info:doi/10.1080%2F13658816.2023.2224421&rft.externalDocID=2224421 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8816&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8816&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8816&client=summon |