Using airborne lidar and machine learning to predict visibility across diverse vegetation and terrain conditions

Visibility analyses, used in many disciplines, rely on viewshed algorithms that map locations visible to an observer based on a given surface model. Mapping continuous visibility over broad extents is uncommon due to extreme computational expense. This study introduces a novel method for spatially-e...

Full description

Saved in:
Bibliographic Details
Published in:International journal of geographical information science : IJGIS Vol. 37; no. 8; pp. 1728 - 1764
Main Authors: Mistick, Katherine A., Campbell, Michael J., Thompson, Matthew P., Dennison, Philip E.
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 03.08.2023
Taylor & Francis LLC
Subjects:
ISSN:1365-8816, 1362-3087, 1365-8824
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Visibility analyses, used in many disciplines, rely on viewshed algorithms that map locations visible to an observer based on a given surface model. Mapping continuous visibility over broad extents is uncommon due to extreme computational expense. This study introduces a novel method for spatially-exhaustive visibility mapping using airborne lidar and random forests that requires only a sparse sample of viewsheds. In 24 topographically and vegetatively diverse landscapes across the contiguous US, 1000 random point viewsheds were generated at four different observation radii (125 m, 250 m, 500 m, 1000 m), using a 1 m resolution lidar-derived digital surface model. Visibility index - the proportion of visible area to total area - was used as the target variable for site-scale and national-scale modeling, which used a diverse set of 146 terrain- and vegetation-based 10 m resolution metrics as predictors. Variables based on vegetation, especially those based on local neighborhoods, were more important than those based on terrain. Visibility at shorter distances was more accurately estimated. National-scale models trained on a wider range of vegetation and terrain conditions resulted in improved R 2 , although at some sites error increased compared to site-scale models. Results from an independent test site demonstrate potential for application of this methodology to diverse landscapes.
AbstractList Visibility analyses, used in many disciplines, rely on viewshed algorithms that map locations visible to an observer based on a given surface model. Mapping continuous visibility over broad extents is uncommon due to extreme computational expense. This study introduces a novel method for spatially-exhaustive visibility mapping using airborne lidar and random forests that requires only a sparse sample of viewsheds. In 24 topographically and vegetatively diverse landscapes across the contiguous US, 1000 random point viewsheds were generated at four different observation radii (125 m, 250 m, 500 m, 1000 m), using a 1 m resolution lidar-derived digital surface model. Visibility index – the proportion of visible area to total area – was used as the target variable for site-scale and national-scale modeling, which used a diverse set of 146 terrain- and vegetation-based 10 m resolution metrics as predictors. Variables based on vegetation, especially those based on local neighborhoods, were more important than those based on terrain. Visibility at shorter distances was more accurately estimated. National-scale models trained on a wider range of vegetation and terrain conditions resulted in improved R2, although at some sites error increased compared to site-scale models. Results from an independent test site demonstrate potential for application of this methodology to diverse landscapes.
Visibility analyses, used in many disciplines, rely on viewshed algorithms that map locations visible to an observer based on a given surface model. Mapping continuous visibility over broad extents is uncommon due to extreme computational expense. This study introduces a novel method for spatially-exhaustive visibility mapping using airborne lidar and random forests that requires only a sparse sample of viewsheds. In 24 topographically and vegetatively diverse landscapes across the contiguous US, 1000 random point viewsheds were generated at four different observation radii (125 m, 250 m, 500 m, 1000 m), using a 1 m resolution lidar-derived digital surface model. Visibility index - the proportion of visible area to total area - was used as the target variable for site-scale and national-scale modeling, which used a diverse set of 146 terrain- and vegetation-based 10 m resolution metrics as predictors. Variables based on vegetation, especially those based on local neighborhoods, were more important than those based on terrain. Visibility at shorter distances was more accurately estimated. National-scale models trained on a wider range of vegetation and terrain conditions resulted in improved R 2 , although at some sites error increased compared to site-scale models. Results from an independent test site demonstrate potential for application of this methodology to diverse landscapes.
Author Mistick, Katherine A.
Thompson, Matthew P.
Campbell, Michael J.
Dennison, Philip E.
Author_xml – sequence: 1
  givenname: Katherine A.
  surname: Mistick
  fullname: Mistick, Katherine A.
  organization: Department of Geography, University of Utah
– sequence: 2
  givenname: Michael J.
  surname: Campbell
  fullname: Campbell, Michael J.
  organization: Department of Geography, University of Utah
– sequence: 3
  givenname: Matthew P.
  surname: Thompson
  fullname: Thompson, Matthew P.
  organization: Rocky Mountain Research Station, USDA Forest Service
– sequence: 4
  givenname: Philip E.
  surname: Dennison
  fullname: Dennison, Philip E.
  organization: Department of Geography, University of Utah
BookMark eNqFkFFLHDEUhUNR0Ko_QQj4PNuZJDO5Q18Uqa0g-KLP4U4msSmzyXoTt-y_78yuffGhhUDC4Tvn3pzP7Cim6Bi7bOpVU0P9pZFdC9B0K1ELuRJCKCWaT-x01kUla9BH-3dbLdAJu8g5DDMJPYBuT9nmOYf4wjHQkCg6PoURiWMc-Rrtz7AoDikuTEl8Q24MtvBtmFPCFMqOo6WUMx_D1lF2fOteXMESUtyHFEeEIXKb4hgWNZ-zY49Tdhfv9xl7vvv2dPujenj8fn9781BZKaFUowcFymMzQuMHKTqnUIu66-cjtG7Ba9EjSuxUK_Ugeosalbeg_eBQ1fKMXR1yN5Re31wu5ld6oziPNAIkAKhW9zP19UDtf0HOGxsO65d578k0tVlaNn9bNkvL5r3l2d1-cG8orJF2__VdH3wh-kRr_J1oGk3B3ZTIE0YbspH_jvgDksiXOQ
CitedBy_id crossref_primary_10_1071_WF24065
crossref_primary_10_1016_j_ijdrr_2025_105714
crossref_primary_10_1016_j_cities_2024_105536
crossref_primary_10_1016_j_landurbplan_2025_105389
Cites_doi 10.1109/JSTARS.2014.2326252
10.1007/978-3-319-24277-4
10.1016/j.rala.2021.09.005
10.3133/cir1399
10.1002/widm.1301
10.1016/j.srs.2021.100034
10.3390/app12178654
10.1145/1653771.1653791
10.1016/j.envsoft.2017.06.012
10.3133/fs20123020
10.3390/fire5050151
10.1016/j.rse.2018.02.046
10.1016/j.jasrep.2017.09.033
10.1016/j.jpdc.2015.07.001
10.1016/j.rse.2020.111853
10.1002/ecy.2109
10.1080/00049158.2016.1218265
10.1080/13658816.2012.677538
10.3390/rs11141685
10.1007/s41064-021-00141-4
10.1016/j.jag.2021.102478
10.1080/01431161.2020.1752952
10.1016/j.apgeog.2019.02.002
10.1007/s10344-020-01390-1
10.1111/2041-210X.12902
10.1029/EO081i048p00583
10.1016/j.landurbplan.2012.12.004
10.1006/jasc.1997.0197
10.1080/01431161.2018.1541110
10.1111/ecog.02881
10.1016/j.jenvman.2007.01.064
10.1093/forestry/cpac055
10.1016/j.landurbplan.2016.04.004
10.1080/13658816.2013.767460
10.1016/j.rse.2019.111347
10.1016/j.landurbplan.2017.10.010
10.1109/GeoInformatics.2011.5980830
10.1038/s41597-020-0444-4
10.3390/rs70810017
10.1111/2041-210X.13385
10.1006/jasc.1996.0142
10.1016/j.jasrep.2022.103437
10.1016/j.landurbplan.2022.104424
10.1080/17538947.2010.533201
10.1109/TELSKS.2013.6704407
10.1016/j.landusepol.2008.10.009
10.1111/2041-210X.13783
10.2174/1874398601003010017
10.1068/b30101
10.1016/j.rse.2021.112511
10.2307/40035363
10.1080/17538947.2011.555565
10.1093/biosci/biu189
10.1007/s11146-012-9365-0
10.1080/13658816.2020.1844207
10.1016/j.isprsjprs.2016.01.011
10.1007/s10661-017-6008-1
10.1111/tgis.12457
10.1016/j.scitotenv.2020.143050
10.1016/j.rse.2020.112165
10.1080/13658816.2010.512273
10.1016/j.rse.2018.06.023
10.1080/713811741
10.1046/j.1526-100x.2000.80065.x
10.1080/13658816.2012.692372
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/13658816.2023.2224421
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1362-3087
1365-8824
EndPage 1764
ExternalDocumentID 10_1080_13658816_2023_2224421
2224421
Genre Research Article
GrantInformation_xml – fundername: National Science Foundation
GroupedDBID -~X
..I
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAIKC
AAJMT
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABRLO
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACHQT
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AFKVX
AFRAH
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EAP
EBO
EBS
EDO
EMK
EPL
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MM-
NA5
NX~
O9-
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TNC
TQWBC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZCA
ZGOLN
~02
~S~
AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-df8484fa1d81fb326e4a7206906927758f729aa3a64537b29ca7a4fc87fbea403
IEDL.DBID TFW
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001024164400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1365-8816
IngestDate Tue Aug 12 16:41:54 EDT 2025
Sat Nov 29 06:05:15 EST 2025
Tue Nov 18 22:19:44 EST 2025
Mon Oct 20 23:45:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-df8484fa1d81fb326e4a7206906927758f729aa3a64537b29ca7a4fc87fbea403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2838884579
PQPubID 53147
PageCount 37
ParticipantIDs informaworld_taylorfrancis_310_1080_13658816_2023_2224421
proquest_journals_2838884579
crossref_citationtrail_10_1080_13658816_2023_2224421
crossref_primary_10_1080_13658816_2023_2224421
PublicationCentury 2000
PublicationDate 2023-08-03
PublicationDateYYYYMMDD 2023-08-03
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-03
  day: 03
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of geographical information science : IJGIS
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References Franklin W.R. (e_1_3_4_19_1) 1994; 2
e_1_3_4_3_1
e_1_3_4_61_1
e_1_3_4_63_1
e_1_3_4_9_1
e_1_3_4_42_1
e_1_3_4_80_1
e_1_3_4_7_1
e_1_3_4_40_1
e_1_3_4_82_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_69_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_27_1
e_1_3_4_65_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_67_1
Wheatley D. (e_1_3_4_75_1) 1995
e_1_3_4_29_1
Wheatley D. (e_1_3_4_76_1) 2000
e_1_3_4_72_1
e_1_3_4_74_1
Zong X. (e_1_3_4_84_1) 2022
e_1_3_4_53_1
e_1_3_4_30_1
e_1_3_4_51_1
e_1_3_4_70_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_59_1
e_1_3_4_55_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_17_1
e_1_3_4_38_1
e_1_3_4_78_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_57_1
e_1_3_4_4_1
e_1_3_4_2_1
e_1_3_4_62_1
e_1_3_4_83_1
e_1_3_4_64_1
e_1_3_4_8_1
e_1_3_4_20_1
e_1_3_4_41_1
e_1_3_4_6_1
e_1_3_4_60_1
e_1_3_4_81_1
e_1_3_4_24_1
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_49_1
e_1_3_4_66_1
e_1_3_4_26_1
e_1_3_4_47_1
e_1_3_4_68_1
e_1_3_4_73_1
e_1_3_4_31_1
e_1_3_4_52_1
e_1_3_4_50_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_58_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_77_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_56_1
e_1_3_4_79_1
e_1_3_4_18_1
van Kreveld M. (e_1_3_4_71_1) 1996
References_xml – ident: e_1_3_4_36_1
– ident: e_1_3_4_69_1
  doi: 10.1109/JSTARS.2014.2326252
– ident: e_1_3_4_77_1
  doi: 10.1007/978-3-319-24277-4
– start-page: 171
  volume-title: Archaeology and GIS: a European perspective
  year: 1995
  ident: e_1_3_4_75_1
– ident: e_1_3_4_52_1
  doi: 10.1016/j.rala.2021.09.005
– ident: e_1_3_4_13_1
– ident: e_1_3_4_68_1
  doi: 10.3133/cir1399
– ident: e_1_3_4_56_1
  doi: 10.1002/widm.1301
– ident: e_1_3_4_67_1
  doi: 10.1016/j.srs.2021.100034
– ident: e_1_3_4_81_1
  doi: 10.3390/app12178654
– ident: e_1_3_4_18_1
  doi: 10.1145/1653771.1653791
– ident: e_1_3_4_11_1
  doi: 10.1016/j.envsoft.2017.06.012
– ident: e_1_3_4_74_1
– ident: e_1_3_4_27_1
  doi: 10.3133/fs20123020
– ident: e_1_3_4_43_1
  doi: 10.3390/fire5050151
– ident: e_1_3_4_72_1
  doi: 10.1016/j.rse.2018.02.046
– ident: e_1_3_4_47_1
  doi: 10.1016/j.jasrep.2017.09.033
– ident: e_1_3_4_8_1
  doi: 10.1016/j.jpdc.2015.07.001
– ident: e_1_3_4_6_1
  doi: 10.1016/j.rse.2020.111853
– ident: e_1_3_4_24_1
  doi: 10.1002/ecy.2109
– ident: e_1_3_4_41_1
  doi: 10.1080/00049158.2016.1218265
– ident: e_1_3_4_70_1
  doi: 10.1080/13658816.2012.677538
– ident: e_1_3_4_40_1
  doi: 10.3390/rs11141685
– ident: e_1_3_4_46_1
  doi: 10.1007/s41064-021-00141-4
– ident: e_1_3_4_23_1
– ident: e_1_3_4_83_1
  doi: 10.1016/j.jag.2021.102478
– ident: e_1_3_4_29_1
– ident: e_1_3_4_65_1
  doi: 10.1080/01431161.2020.1752952
– ident: e_1_3_4_20_1
– ident: e_1_3_4_44_1
  doi: 10.1016/j.apgeog.2019.02.002
– ident: e_1_3_4_51_1
  doi: 10.1007/s10344-020-01390-1
– ident: e_1_3_4_2_1
  doi: 10.1111/2041-210X.12902
– ident: e_1_3_4_16_1
  doi: 10.1029/EO081i048p00583
– ident: e_1_3_4_42_1
– ident: e_1_3_4_9_1
  doi: 10.1016/j.landurbplan.2012.12.004
– ident: e_1_3_4_35_1
  doi: 10.1006/jasc.1997.0197
– ident: e_1_3_4_49_1
  doi: 10.1080/01431161.2018.1541110
– ident: e_1_3_4_58_1
  doi: 10.1111/ecog.02881
– ident: e_1_3_4_50_1
  doi: 10.1016/j.jenvman.2007.01.064
– ident: e_1_3_4_22_1
  doi: 10.1093/forestry/cpac055
– ident: e_1_3_4_80_1
  doi: 10.1016/j.landurbplan.2016.04.004
– ident: e_1_3_4_45_1
  doi: 10.1080/13658816.2013.767460
– ident: e_1_3_4_78_1
– ident: e_1_3_4_37_1
  doi: 10.1016/j.rse.2019.111347
– volume-title: Beyond the map archaeology and spatial technologies
  year: 2000
  ident: e_1_3_4_76_1
– ident: e_1_3_4_73_1
  doi: 10.1016/j.landurbplan.2017.10.010
– ident: e_1_3_4_21_1
  doi: 10.1109/GeoInformatics.2011.5980830
– ident: e_1_3_4_64_1
  doi: 10.1038/s41597-020-0444-4
– ident: e_1_3_4_32_1
  doi: 10.3390/rs70810017
– ident: e_1_3_4_38_1
  doi: 10.1111/2041-210X.13385
– volume-title: Variations on sweep algorithms
  year: 1996
  ident: e_1_3_4_71_1
– ident: e_1_3_4_55_1
– ident: e_1_3_4_17_1
  doi: 10.1006/jasc.1996.0142
– ident: e_1_3_4_62_1
  doi: 10.1016/j.jasrep.2022.103437
– volume: 2
  start-page: 22
  year: 1994
  ident: e_1_3_4_19_1
  article-title: Higher isn’t necessarily better: visibility algorithms and experiments
  publication-title: Advances in GIS Research
– ident: e_1_3_4_63_1
– ident: e_1_3_4_28_1
  doi: 10.1016/j.landurbplan.2022.104424
– ident: e_1_3_4_15_1
  doi: 10.1080/17538947.2010.533201
– ident: e_1_3_4_66_1
  doi: 10.1109/TELSKS.2013.6704407
– ident: e_1_3_4_61_1
  doi: 10.1016/j.landusepol.2008.10.009
– ident: e_1_3_4_79_1
  doi: 10.1111/2041-210X.13783
– ident: e_1_3_4_53_1
  doi: 10.2174/1874398601003010017
– ident: e_1_3_4_12_1
  doi: 10.1068/b30101
– ident: e_1_3_4_7_1
  doi: 10.1016/j.rse.2021.112511
– ident: e_1_3_4_31_1
  doi: 10.2307/40035363
– ident: e_1_3_4_57_1
– ident: e_1_3_4_10_1
  doi: 10.1080/17538947.2011.555565
– ident: e_1_3_4_48_1
  doi: 10.1093/biosci/biu189
– start-page: 1306
  year: 2022
  ident: e_1_3_4_84_1
  article-title: LiDAR reveals a preference for intermediate visibility by a forest‐dwelling ungulate species
  publication-title: Journal of Animal Ecology
– ident: e_1_3_4_26_1
  doi: 10.1007/s11146-012-9365-0
– ident: e_1_3_4_60_1
  doi: 10.1080/13658816.2020.1844207
– ident: e_1_3_4_4_1
  doi: 10.1016/j.isprsjprs.2016.01.011
– ident: e_1_3_4_33_1
  doi: 10.1007/s10661-017-6008-1
– ident: e_1_3_4_59_1
  doi: 10.1111/tgis.12457
– ident: e_1_3_4_34_1
  doi: 10.1016/j.scitotenv.2020.143050
– ident: e_1_3_4_54_1
  doi: 10.1016/j.rse.2020.112165
– ident: e_1_3_4_3_1
  doi: 10.1080/13658816.2010.512273
– ident: e_1_3_4_5_1
  doi: 10.1016/j.rse.2018.06.023
– ident: e_1_3_4_39_1
  doi: 10.1080/713811741
– ident: e_1_3_4_30_1
  doi: 10.1046/j.1526-100x.2000.80065.x
– ident: e_1_3_4_25_1
– ident: e_1_3_4_82_1
  doi: 10.1080/13658816.2012.692372
– ident: e_1_3_4_14_1
SSID ssib023898875
ssj0001015
ssib000159086
Score 2.409473
Snippet Visibility analyses, used in many disciplines, rely on viewshed algorithms that map locations visible to an observer based on a given surface model. Mapping...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1728
SubjectTerms Algorithms
Landscape
Lidar
Machine learning
Mapping
random forest
Scale models
Terrain
Vegetation
Viewshed
Visibility
Visibility maps
Title Using airborne lidar and machine learning to predict visibility across diverse vegetation and terrain conditions
URI https://www.tandfonline.com/doi/abs/10.1080/13658816.2023.2224421
https://www.proquest.com/docview/2838884579
Volume 37
WOSCitedRecordID wos001024164400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1362-3087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001015
  issn: 1365-8816
  databaseCode: TFW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SBL34FqtVcvC6td0kTfYoYvFUPFTsbZluEi3UtmzXQv-9k2y2toj0oMddyIRkZjIzyTczhNwKsErE3ERMGAxQEtGKIIlFxDpGaZYJZqDlm03IXk8NBslzQBPOA6zSxdC2LBThz2qn3DCcV4i4O4fMUqrtAAYxa6KB49ynkqPpd6rZ776uOTCup_fK4KJ9SlCrvh1kFEhRZWY5klWOz2-zbFivjdqmP85yb6C6h_-wtCNyELxTel-K0zHZMZMTshcapb8vT8nMQwwojHKUnYmh45GGnOJ09MOjMvFPuGuhxZTOcvcMVFCXwO5BuEsKfmFUeziIoQvzFvCOnggy2bWsoBik6xJLdkZeuo_9h6coNG2IMox2i0hbxRW30NaqbYfoHBoOMvb1kJNYYnRi0Z0HYNDhgslhnGQggdtMSTs0wFvsnNQm04m5IBTpxBYDOgDJuXSxnbbIMs20RclinTrhFTPSLFQ0d401xmk7FD6ttjN125mG7ayT5mrYrCzpsW1Ass7ptPB3KbZsfJKyLWMblVik4XSYp-jSKaW4kMnlH0hfkX336dGIrEFqRf5prslutihG8_zG68EXBr3_QQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QIMGFN-JNDlwLW5Ms6REhpiHGTkPsFmVNApNgTKUg8e-x03QMIcQBrq3iqLET2-nnz4ScCOOVSLlLmHCQoGSikZgsFQlrOWVZLpgzjdBsQvZ6ajDIZmthEFaJObSviCLCWY2bGy-ja0jcGUKzlGoiwiBlp-DhOMda8gUBvhb58_vtu5kQBrt6T10ueKgM9tVniAwmKeraLJRZV_n8NM0X__WF3fTbaR5cVHv1Pz5ujazEAJWeVxa1TubceIMsxV7pD--bZBJQBtSMCjCfsaOPI2sKCvPRpwDMhCfxuoWWz3RS4J-gkmINe8DhvlMTvozagAhx9M3dR8hjEAJ6xq4VFPJ0W8HJtsht-7J_0Uli34Ykh4S3TKxXXHFvmlY1_RDiQ8eNTAMlcpZKSFA8RPTGMNPigslhmuVGGu5zJf3QGd5g22R-_Dx2O4SCnNRDTmeM5Fxiemc96Mwy68G4WGuX8FobOo-k5thb41E3I_dpvZwal1PH5dwlp9Nhk4rV47cB2ayqdRmuU3zV-0SzX8Ye1Hah4wHxoiGqU0pxIbO9P4g-Jkud_k1Xd6961_tkGV8FcCI7IPNl8eoOyWL-Vo5eiqOwKT4AOx8Deg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QQMCFN-JNDlwLW5Ms6REBFQg07TAEtyhrEpg0ytSVSfv3OGnKQwjtANdWcZTYif21n22ETpiygsXURIQZACgJa0YqiVlE2kZokjFiVNM3m-Cdjnh8TLqBTTgOtEqHoW1VKMLf1e5wj7StGXFnjpklRMsRDGJyCg6OUpdKPg-hc9sZeS99-BLBuKbeHx4XHFQCx-ozQgaLZHVqlpNZJ_n8Ns039_WtuOmPy9x7qHT1H9a2hlZCeIrPK3taR3Mm30BLoVP683QTjTzHAKtBAcaTGzwcaFVgmA6_eFomPAkfW3D5ikeF-w9UYpfB7lm4U6z8wrD2fBCDJ-YpEB69ENCy61mBAaXriky2he7Tq97FdRS6NkQZwN0y0lZQQa1qadGyfYgODVU89gWRk5gDPLEQzytFVJsywvtxkimuqM0Et32jaJNso0b-mpsdhEFObAHRKcUp5Q7caQsq00RbMC3S3kW0VobMQklz11ljKFuh8mm9ndJtpwzbuYtOP4aNqpoeswYkXzUtS_8xxVadTySZMfagNgsZroexhJhOCEEZT_b-IPoYLXYvU3l307ndR8vujWcmkgPUKIs3c4gWskk5GBdH_ki8AyAnAiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+airborne+lidar+and+machine+learning+to+predict+visibility+across+diverse+vegetation+and+terrain+conditions&rft.jtitle=International+journal+of+geographical+information+science+%3A+IJGIS&rft.au=Mistick%2C+Katherine+A.&rft.au=Campbell%2C+Michael+J.&rft.au=Thompson%2C+Matthew+P.&rft.au=Dennison%2C+Philip+E.&rft.date=2023-08-03&rft.pub=Taylor+%26+Francis&rft.issn=1365-8816&rft.eissn=1362-3087&rft.volume=37&rft.issue=8&rft.spage=1728&rft.epage=1764&rft_id=info:doi/10.1080%2F13658816.2023.2224421&rft.externalDocID=2224421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8816&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8816&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8816&client=summon