Efficient FPGA-Based Real-Time Implementation of Model Predictive Control for Single-Phase Direct Matrix Converter

Finite control set model predictive control (FCS-MPC) is an optimal control strategy that solves user-defined objective functions to determine the best control action for the next time interval. Real-time implementations of model predictive control techniques are quite challenging for certain topolo...

Full description

Saved in:
Bibliographic Details
Published in:Electric power components and systems Vol. 48; no. 16-17; pp. 1773 - 1785
Main Authors: Gulbudak, Ozan, Gokdag, Mustafa
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis 07.05.2021
Taylor & Francis Ltd
Subjects:
ISSN:1532-5008, 1532-5016
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Finite control set model predictive control (FCS-MPC) is an optimal control strategy that solves user-defined objective functions to determine the best control action for the next time interval. Real-time implementations of model predictive control techniques are quite challenging for certain topologies due to computation complexities. In this paper, key aspects of achieving robust, reliable, and efficient field programmable gate arrays (FPGAs) based model predictive control are presented for single-phase direct matrix topology. The effectiveness of FPGA-based model predictive control is validated experimentally using an ALTERA Cyclone IV FPGA. Experimental results show that an effective load current control performance is obtained by taking advantage of pipelining capability of the FPGA device. The tradeoff between control bandwidth, FPGA resources, and hardware utilization is discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1532-5008
1532-5016
DOI:10.1080/15325008.2021.1908448