Prediction of milk protein content based on improved sparrow search algorithm and optimized back propagation neural network

The quality of milk is largely determined by the protein content. The feasibility of predicting the protein content of milk by hyperspectral image has attracted more attentions from researchers for minor detection cost and high efficiency. In this paper, a prediction modeling method based on improve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Spectroscopy letters Ročník 55; číslo 4; s. 229 - 239
Hlavní autoři: Liu, Jiangping, Hu, Pengwei, Xue, Heru, Pan, Xin, Chen, Chen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 21.04.2022
Taylor & Francis Ltd
Témata:
ISSN:0038-7010, 1532-2289
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The quality of milk is largely determined by the protein content. The feasibility of predicting the protein content of milk by hyperspectral image has attracted more attentions from researchers for minor detection cost and high efficiency. In this paper, a prediction modeling method based on improved sparrow search algorithm (SSA) and optimized back propagation (BP) neural network is proposed, in which sine chaotic map is introduced to initialize the population position to improve the optimization performance of SSA. In the experiment, hyperspectral images of each kind of milk were collected by visible/near infrared hyperspectral imaging system to acquire hyperspectral data, then the spectral data were pretreated by Savitzky-Golay smoothing, and the competitive adaptive reweighted sampling combined with successive projections algorithm to select 13 characteristic bands. Subsequently, the spectral data corresponding to the characteristic bands are used as the input of back propagation neural network, optimized by the improved sparrow search algorithm for the initial weight and threshold of BP neural network, to establish three prediction models(BP model, the BP model based on SSA optimization and the BP model based on improved SSA optimization).Experimental results demonstrate that the BP model based on improved SSA optimization has better fitting ability and higher prediction accuracy for milk protein content. This research provides algorithm support and theoretical basis for the rapid nondestructive detection of milk protein content based on BP neural network.
AbstractList The quality of milk is largely determined by the protein content. The feasibility of predicting the protein content of milk by hyperspectral image has attracted more attentions from researchers for minor detection cost and high efficiency. In this paper, a prediction modeling method based on improved sparrow search algorithm (SSA) and optimized back propagation (BP) neural network is proposed, in which sine chaotic map is introduced to initialize the population position to improve the optimization performance of SSA. In the experiment, hyperspectral images of each kind of milk were collected by visible/near infrared hyperspectral imaging system to acquire hyperspectral data, then the spectral data were pretreated by Savitzky–Golay smoothing, and the competitive adaptive reweighted sampling combined with successive projections algorithm to select 13 characteristic bands. Subsequently, the spectral data corresponding to the characteristic bands are used as the input of back propagation neural network, optimized by the improved sparrow search algorithm for the initial weight and threshold of BP neural network, to establish three prediction models(BP model, the BP model based on SSA optimization and the BP model based on improved SSA optimization).Experimental results demonstrate that the BP model based on improved SSA optimization has better fitting ability and higher prediction accuracy for milk protein content. This research provides algorithm support and theoretical basis for the rapid nondestructive detection of milk protein content based on BP neural network.
Author Chen, Chen
Hu, Pengwei
Xue, Heru
Liu, Jiangping
Pan, Xin
Author_xml – sequence: 1
  givenname: Jiangping
  surname: Liu
  fullname: Liu, Jiangping
  organization: College of Computer and Information Engineering of the Inner Mongolia Agricultural University
– sequence: 2
  givenname: Pengwei
  surname: Hu
  fullname: Hu, Pengwei
  organization: College of Computer and Information Engineering of the Inner Mongolia Agricultural University
– sequence: 3
  givenname: Heru
  surname: Xue
  fullname: Xue, Heru
  organization: College of Computer and Information Engineering of the Inner Mongolia Agricultural University
– sequence: 4
  givenname: Xin
  surname: Pan
  fullname: Pan, Xin
  organization: College of Computer and Information Engineering of the Inner Mongolia Agricultural University
– sequence: 5
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  organization: College of Computer and Information Engineering of the Inner Mongolia Agricultural University
BookMark eNqFkEtLxDAUhYMoOI7-BCHguppH0wduFPEFgi50HdI2mYm2Sb3JOKh_3syMblzoJjeXnHNu7reHtp13GqFDSo4pqcgJIbwqSeoYYSwdggpRbKEJFZxljFX1NpqsNNlKtIv2QngmhIqyKifo8wF0Z9tovcPe4MH2L3gEH7V1uPUuahdxo4LucBLYIT29pXsYFYBf4qAVtHOs-pkHG-cDVi4Jx2gH-5FkjWrXaaOaqfUEpxeg-lTi0sPLPtoxqg_64LtO0dPV5ePFTXZ3f317cX6XtZxXMeuapiAs5ywXpBGGUq2FKQqSli1KU2vDay0q3uV1LuqONmWX60qIsqEq7xpu-BQdbXLTV14XOkT57Bfg0kjJiqIqCK8TqikSG1ULPgTQRo5gBwXvkhK54ix_OMsVZ_nNOflOf_laG9frRlC2_9d9tnFbZzwMKnHpOxnVe-_BgHKtDZL_HfEFUROaHg
CitedBy_id crossref_primary_10_1111_1750_3841_17420
crossref_primary_10_1016_j_est_2023_110187
crossref_primary_10_1016_j_jfca_2025_108234
crossref_primary_10_3390_rs15071732
crossref_primary_10_1002_fsn3_4556
crossref_primary_10_1111_1750_3841_17621
crossref_primary_10_1080_00387010_2024_2331616
crossref_primary_10_1038_s41598_022_27037_6
crossref_primary_10_1155_2022_6098797
crossref_primary_10_3390_catal14040217
crossref_primary_10_3390_foods11152278
Cites_doi 10.1080/21642583.2019.1708830
10.1016/j.amc.2006.07.025
10.1016/j.compag.2014.01.016
10.1016/j.talanta.2013.03.041
10.1016/j.asoc.2017.07.059
10.1016/j.aca.2009.06.046
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
2022 Taylor & Francis Group, LLC
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
– notice: 2022 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1080/00387010.2022.2051556
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1532-2289
EndPage 239
ExternalDocumentID 10_1080_00387010_2022_2051556
2051556
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
123
30N
4.4
53G
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADMLS
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NW0
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TCY
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
TWZ
UT5
UU3
ZGOLN
~02
~S~
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c338t-dbb602432450b5f11ee5f66002267f9ef39e583d49459d1b7d4e8557b1a4db3f3
IEDL.DBID TFW
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000796408000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-7010
IngestDate Sun Sep 07 03:46:23 EDT 2025
Sat Nov 29 06:19:09 EST 2025
Tue Nov 18 22:32:14 EST 2025
Mon Oct 20 23:47:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-dbb602432450b5f11ee5f66002267f9ef39e583d49459d1b7d4e8557b1a4db3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2668603915
PQPubID 2045227
PageCount 11
ParticipantIDs proquest_journals_2668603915
crossref_primary_10_1080_00387010_2022_2051556
informaworld_taylorfrancis_310_1080_00387010_2022_2051556
crossref_citationtrail_10_1080_00387010_2022_2051556
PublicationCentury 2000
PublicationDate 2022-04-21
PublicationDateYYYYMMDD 2022-04-21
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-21
  day: 21
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Spectroscopy letters
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Wupengyao D. (CIT0013) 2019; 39
Xiangxin K. (CIT0010) 2017; 53
CIT0012
CIT0011
Dong'e Z. (CIT0002) 2019; 39
Zizhu Z. (CIT0005) 2018; 46
Huixian S. (CIT0006) 2019; 35
Yilei L. (CIT0014) 2021; 32
Qinhong L. (CIT0020) 2012; 28
Mingbo L. (CIT0017) 2014; 43
Guohai L. (CIT0021) 2013; 29
Dan P. (CIT0001) 2020; 41
Qianqian Z. (CIT0003) 2015; 35
CIT0016
CIT0015
CIT0007
Xiang W. (CIT0018) 2019; 39
CIT0009
Mingfu Z. (CIT0004) 2014; 35
CIT0008
Dengfei J. (CIT0019) 2013; 29
References_xml – volume: 46
  start-page: 45
  issue: 02
  year: 2018
  ident: CIT0005
  publication-title: China Dairy Industry
– volume: 39
  start-page: 921
  issue: 03
  year: 2019
  ident: CIT0002
  publication-title: Spectroscopy and Spectral Analysis
– volume: 43
  start-page: 1265
  issue: 04
  year: 2014
  ident: CIT0017
  publication-title: Infrared and Laser Engineering
– ident: CIT0008
– volume: 41
  start-page: 256
  issue: 04
  year: 2020
  ident: CIT0001
  publication-title: Food Science
– volume: 29
  start-page: 218
  issue: 1
  year: 2013
  ident: CIT0021
  publication-title: Journal of Agricultural Engineering
– ident: CIT0011
  doi: 10.1080/21642583.2019.1708830
– ident: CIT0009
  doi: 10.1016/j.amc.2006.07.025
– ident: CIT0012
  doi: 10.1016/j.compag.2014.01.016
– volume: 35
  start-page: 3436
  issue: 12
  year: 2015
  ident: CIT0003
  publication-title: Spectroscopy and Spectral Analysis
– ident: CIT0016
  doi: 10.1016/j.talanta.2013.03.041
– volume: 28
  start-page: 132
  issue: 23
  year: 2012
  ident: CIT0020
  publication-title: Journal of Agricultural Engineering
– volume: 39
  start-page: 3136
  issue: 10
  year: 2019
  ident: CIT0018
  publication-title: Spectroscopy and Spectral Analysis
– volume: 29
  start-page: 264
  issue: 12
  year: 2013
  ident: CIT0019
  publication-title: Journal of Agricultural Engineering
– volume: 35
  start-page: 44
  issue: 01
  year: 2014
  ident: CIT0004
  publication-title: Journal of Laser
– volume: 32
  start-page: 88
  issue: 01
  year: 2021
  ident: CIT0014
  publication-title: Optoelectronics Laser
– volume: 53
  start-page: 137
  issue: 22
  year: 2017
  ident: CIT0010
  publication-title: Computer Engineering and Application
– volume: 39
  start-page: 2800
  issue: 09
  year: 2019
  ident: CIT0013
  publication-title: Spectroscopy and Spectral Analysis
– volume: 35
  start-page: 196
  issue: 02
  year: 2019
  ident: CIT0006
  publication-title: Journal of Agricultural Engineering
– ident: CIT0007
  doi: 10.1016/j.asoc.2017.07.059
– ident: CIT0015
  doi: 10.1016/j.aca.2009.06.046
SSID ssj0015787
Score 2.3382304
Snippet The quality of milk is largely determined by the protein content. The feasibility of predicting the protein content of milk by hyperspectral image has...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 229
SubjectTerms Adaptive sampling
Algorithms
Back propagation
Back propagation networks
back propagation neural network
Hyperspectral imaging
improved sparrow search algorithm
Infrared imaging
Neural networks
Optimization
Prediction models
Prediction of milk protein
Propagation
Proteins
Search algorithms
spectral analysis
Title Prediction of milk protein content based on improved sparrow search algorithm and optimized back propagation neural network
URI https://www.tandfonline.com/doi/abs/10.1080/00387010.2022.2051556
https://www.proquest.com/docview/2668603915
Volume 55
WOSCitedRecordID wos000796408000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1532-2289
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015787
  issn: 0038-7010
  databaseCode: TFW
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQAsHCo4AoFOSBNahOnNeIKioGVHUo0C2KXxDRpqgJDPDnuXOSQoVQB1iiRMpZlv35zo_P3xFyIZgrVOBGjmc86XDPlU4kUMg1DTTzuNLa5iK4vw0Hg2g8joc1m7CoaZW4hjaVUIT11Ti4U1E0jDjMPwYoQxIzBCB4YJYSFN2G0I9Dc9R_WJwjIB4rYcbIQZPmDs9vpSxFpyXt0h--2gag_u4_VH2P7NSzT3pVwWWfrOm8RbZ6TdK3Ftm0jFBZHJCP4RzPcLDf6MzQaTZ5plbUIcsp8tshWFEMgYrCD5ndmoB38E8o6kirAUTTyeNsnpVPUwo1pjNwT9PsHX4TqbSlgTezyKAoqwkVyytS-iG561-PejdOnanBkbDELR0lRIDShi73u8I3jGntmwCP_NwgNLE2Xqz9yFM85n6smAgV15Hvh4KlXAmAyRFZz2e5PiY0lN0olq7UsPDhrlEC5q94IVYHbqoY89qENz2UyFrGHLNpTBL2pXZq2zjBNk7qNm6Ty4XZS6Xjscog_t79SWk3UEyV7STxVth2GqwktUsoEpgJRYHV4z_5Q9GnZBs_q02gDlkv56_6jGzItzIr5ucW_J-en_8y
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB61tBVcgFIQ7_rQayrsOK8jQl1RdVn1sDxuVvxqo-5m0W7gAH-eGSehoKri0F4iS_FYlj2esT3j7wP4pLnQNhV5FPvYRDIWJso1AbmWqeOxtM4FLoKLYTYa5VdXxdO3MJRWSWdo3wJFBFtNi5suo_uUOCIgQzWjLGb0QPghmpL0NbxJ0NcSfv54cPkYSSCNbKEZ84hk-lc8f2vmmX96hl76h7UOLmiw9j86vw6r3QaUHbca8x5euXoDlk963rcNeBeSQs3iA9x_n1MYh6aOzTybVpNfLOA6VDWjFHf0V4y8oGVYoQq3E1hGE0W4jqxdQ6yc_JjNq-bnlGGX2Qwt1LS6w2q6NKE1NGhBORgha2LH6jYvfRPOB1_GJ6dRR9YQGTzlNpHVOiV0QyGTI514zp1LfEpRP5FmvnA-LlySx1YWMiks15mVLk-STPNSWo2asgVL9ax228Ayc5QXRhiHZx8pvNW4haU3sS4VpeU83gHZT5EyHZI5EWpMFP8NeBrGWNEYq26Md-Dzo9h1C-XxkkDxdP5VE-5QfEt4ouIXZPd7ZVGdVVgo3AzlaYDk3_2Hpj_C8un4bKiGX0ff9mCFflF4S_B9WGrmN-4A3prbplrMD8NKeADO2QNw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9VAEJ4oonhRAQ0o6h64lrDb7bY9GvRFI3l5B1Rum-4vaHivj7xXOcA_z8y2RYkhHPDSNGlns9mdnZnd-fYbgF3DhXFKFEkaUpvIVNikMETkWinPU-m8j7UIfh7m43FxfFxOejThsodV0h46dEQR0VbT4j53YUDEUf0x1DICMaMDwgdVKVGP4QmGzoqU_Gj06yaRQArZMTMWCckMl3juauaWe7pFXvqPsY4eaPTyP_T9Fbzow0_2qdOXdXjkmw1YOxiqvm3A0wgJtctNuJosKIlDE8fmgc3q6RmLrA51wwjgjt6KkQ90DH-o49kEvqOBIlZH1q0gVk1P5ou6PZ0x7DGbo32a1Zf4m6lsbA3NWVQNRrya2LGmQ6W_hh-jL0cHX5O-VENicY_bJs4YRdyGQmb7Jguce58FRTk_ofJQ-pCWPitSJ0uZlY6b3ElfZFlueCWdQT15AyvNvPFbwHK7X5RWWI87HymCMxjA0o1Yr0TlOE-3QQ4zpG3PY07lNKaa_6E7jWOsaYx1P8bbsHcjdt4RedwnUP49_bqNJyihK3ei03tkdwZd0b1NWGoMhQoVCfnfPqDpj_Bs8nmkD7-Nv7-D5_SFcluC78BKu_jt38OqvWjr5eJDXAfXtbkCIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+milk+protein+content+based+on+improved+sparrow+search+algorithm+and+optimized+back+propagation+neural+network&rft.jtitle=Spectroscopy+letters&rft.au=Liu%2C+Jiangping&rft.au=Hu%2C+Pengwei&rft.au=Xue%2C+Heru&rft.au=Pan%2C+Xin&rft.date=2022-04-21&rft.pub=Taylor+%26+Francis&rft.issn=0038-7010&rft.eissn=1532-2289&rft.volume=55&rft.issue=4&rft.spage=229&rft.epage=239&rft_id=info:doi/10.1080%2F00387010.2022.2051556&rft.externalDocID=2051556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-7010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-7010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-7010&client=summon