A Benson-type algorithm for bounded convex vector optimization problems with vertex selection

We present an algorithm for approximately solving bounded convex vector optimization problems. The algorithm provides both an outer and an inner polyhedral approximation of the upper image. It is a modification of the primal algorithm presented by Löhne, Rudloff, and Ulus in 2014. There, vertices of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization methods & software Ročník 37; číslo 3; s. 1006 - 1026
Hlavní autoři: Dörfler, Daniel, Löhne, Andreas, Schneider, Christopher, Weißing, Benjamin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 04.05.2022
Taylor & Francis Ltd
Témata:
ISSN:1055-6788, 1029-4937
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present an algorithm for approximately solving bounded convex vector optimization problems. The algorithm provides both an outer and an inner polyhedral approximation of the upper image. It is a modification of the primal algorithm presented by Löhne, Rudloff, and Ulus in 2014. There, vertices of an already known outer approximation are successively cutoff to improve the approximation error. We propose a new and efficient selection rule for deciding which vertex to cutoff. Numerical examples are provided which illustrate that this method may solve fewer scalar problems overall and therefore may be faster while achieving the same approximation quality.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1055-6788
1029-4937
DOI:10.1080/10556788.2021.1880579