Non-convex regularization and accelerated gradient algorithm for sparse portfolio selection

In portfolio optimization, non-convex regularization has recently been recognized as an important approach to promote sparsity, while countervailing the shortcomings of convex penalty. In this paper, we customize the non-convex piecewise quadratic approximation (PQA) function considering the backgro...

Full description

Saved in:
Bibliographic Details
Published in:Optimization methods & software Vol. 38; no. 2; pp. 434 - 456
Main Authors: Li, Qian, Zhang, Wei, Wang, Guoqiang, Bai, Yanqin
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 04.03.2023
Taylor & Francis Ltd
Subjects:
ISSN:1055-6788, 1029-4937
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In portfolio optimization, non-convex regularization has recently been recognized as an important approach to promote sparsity, while countervailing the shortcomings of convex penalty. In this paper, we customize the non-convex piecewise quadratic approximation (PQA) function considering the background of portfolio management and present the PQA regularized mean-variance model (PMV). By exposing the feature of PMV, we prove that a KKT point of PMV is a local minimizer if the regularization parameter satisfies a mild condition. Besides, the theoretical sparsity of PMV is analysed, which is associated with the regularization parameter and the weight parameter. To solve this model, we introduce the accelerated proximal gradient (APG) algorithm, whose improved linear convergence rate compared with proximal gradient (PG) algorithm is developed. Moreover, the optimal accelerated parameter of APG algorithm for PMV is attained. These theoretical results are further illustrated with numerical experiments. Finally, empirical analysis demonstrates that the proposed model has a better out-of-sample performance and a lower turnover than many other existing models on the tested datasets.
AbstractList In portfolio optimization, non-convex regularization has recently been recognized as an important approach to promote sparsity, while countervailing the shortcomings of convex penalty. In this paper, we customize the non-convex piecewise quadratic approximation (PQA) function considering the background of portfolio management and present the PQA regularized mean–variance model (PMV). By exposing the feature of PMV, we prove that a KKT point of PMV is a local minimizer if the regularization parameter satisfies a mild condition. Besides, the theoretical sparsity of PMV is analysed, which is associated with the regularization parameter and the weight parameter. To solve this model, we introduce the accelerated proximal gradient (APG) algorithm, whose improved linear convergence rate compared with proximal gradient (PG) algorithm is developed. Moreover, the optimal accelerated parameter of APG algorithm for PMV is attained. These theoretical results are further illustrated with numerical experiments. Finally, empirical analysis demonstrates that the proposed model has a better out-of-sample performance and a lower turnover than many other existing models on the tested datasets.
Author Li, Qian
Wang, Guoqiang
Zhang, Wei
Bai, Yanqin
Author_xml – sequence: 1
  givenname: Qian
  surname: Li
  fullname: Li, Qian
  email: liqian15123329166@163.com
  organization: Shanghai University of Engineering Science
– sequence: 2
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: South China University of Technology
– sequence: 3
  givenname: Guoqiang
  surname: Wang
  fullname: Wang, Guoqiang
  organization: Shanghai University of Engineering Science
– sequence: 4
  givenname: Yanqin
  surname: Bai
  fullname: Bai, Yanqin
  organization: Shanghai University
BookMark eNqFkLtOAzEQRS0EEiTwCUiWqDd4_diHaEARLymCBioKy2t7g6ONHcYOEL6eXQINBVQzxZw7M2eEdn3wFqHjnExyUpHTnAhRlFU1oYTSCc05FRXZQQc5oXXGa1buDr0Q2TC0j0YxLgghPOfFAXq6Cz7Twb_adwx2vu4UuA-VXPBYeYOV1razoJI1eA7KOOsTVt08gEvPS9wGwHGlIFq8CpDa0LmAY0_oIeEQ7bWqi_bou47R49Xlw_Qmm91f304vZplmrEqZKYloSMMVa5q8rXh_KaubkrOiv5FYamhDuS1qTgwvaauKSrNaMFE2ta6EMWyMTra5KwgvaxuTXIQ1-H6lpGVZ1wWhvYUxOttOaQgxgm2ldunr0wTKdTIncrApf2zKwab8ttnT4he9ArdUsPmXO99yzveyluotQGdkUpsuQAvKaxcl-zviE14Vji4
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124299
crossref_primary_10_1007_s12351_024_00867_0
Cites_doi 10.1093/rfs/hhm075
10.1007/s11425-017-9315-9
10.1287/opre.1080.0566
10.1109/TSP.2009.2026004
10.1111/1540-6261.00580
10.1007/s10107-015-0871-8
10.1007/s11590-016-1054-0
10.1016/S0927-5398(03)00007-0
10.1137/16M1055323
10.1137/080716542
10.1007/s10479-019-03289-w
10.1007/s10287-014-0227-5
10.1007/BF00940067
10.1137/0716071
10.1007/s10898-022-01257-6
10.1007/s10107-012-0629-5
10.2307/2975974
10.1016/j.ejor.2013.02.016
10.1007/s10898-012-9842-2
10.1007/s10107-014-0753-5
10.1088/0266-5611/24/3/035020
10.1007/s10589-018-0049-4
10.1080/01621459.2012.682825
10.1287/mnsc.1080.0986
10.1198/016214501753382273
10.1109/LSP.2007.898300
10.1016/0304-405X(80)90007-0
10.1073/pnas.0904287106
10.1007/s11432-010-0090-0
10.1214/09-AOS729
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/10556788.2022.2142580
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4937
EndPage 456
ExternalDocumentID 10_1080_10556788_2022_2142580
2142580
Genre Review
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-d705b0b4a3bb1f8405539b74360410e2d2b24e6940d472fa68c395357b9c85dd3
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000881455900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1055-6788
IngestDate Wed Aug 13 07:39:46 EDT 2025
Tue Nov 18 20:38:48 EST 2025
Sat Nov 29 02:36:07 EST 2025
Mon Oct 20 23:46:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-d705b0b4a3bb1f8405539b74360410e2d2b24e6940d472fa68c395357b9c85dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2779960249
PQPubID 186278
PageCount 23
ParticipantIDs crossref_primary_10_1080_10556788_2022_2142580
proquest_journals_2779960249
crossref_citationtrail_10_1080_10556788_2022_2142580
informaworld_taylorfrancis_310_1080_10556788_2022_2142580
PublicationCentury 2000
PublicationDate 2023-03-04
PublicationDateYYYYMMDD 2023-03-04
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-04
  day: 04
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Optimization methods & software
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0012
CIT0034
CIT0011
CIT0033
Sun W.Y. (CIT0031) 2006
CIT0014
CIT0013
CIT0035
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
Candés E.J. (CIT0004) 2007; 14
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0012
  doi: 10.1093/rfs/hhm075
– ident: CIT0024
  doi: 10.1007/s11425-017-9315-9
– ident: CIT0013
  doi: 10.1287/opre.1080.0566
– ident: CIT0017
  doi: 10.1109/TSP.2009.2026004
– ident: CIT0022
  doi: 10.1111/1540-6261.00580
– ident: CIT0018
  doi: 10.1007/s10107-015-0871-8
– ident: CIT0021
  doi: 10.1007/s11590-016-1054-0
– ident: CIT0023
  doi: 10.1016/S0927-5398(03)00007-0
– ident: CIT0033
  doi: 10.1137/16M1055323
– ident: CIT0001
  doi: 10.1137/080716542
– ident: CIT0009
  doi: 10.1007/s10479-019-03289-w
– ident: CIT0016
  doi: 10.1007/s10287-014-0227-5
– ident: CIT0020
  doi: 10.1007/BF00940067
– ident: CIT0027
  doi: 10.1137/0716071
– ident: CIT0025
  doi: 10.1007/s10898-022-01257-6
– ident: CIT0030
  doi: 10.1007/s10107-012-0629-5
– ident: CIT0028
  doi: 10.2307/2975974
– ident: CIT0026
  doi: 10.1016/j.ejor.2013.02.016
– ident: CIT0010
  doi: 10.1007/s10898-012-9842-2
– ident: CIT0002
  doi: 10.1007/s10107-014-0753-5
– volume-title: Optimization Theory and Methods: Nonlinear Programming
  year: 2006
  ident: CIT0031
– ident: CIT0006
  doi: 10.1088/0266-5611/24/3/035020
– ident: CIT0008
  doi: 10.1007/s10589-018-0049-4
– ident: CIT0015
  doi: 10.1080/01621459.2012.682825
– ident: CIT0011
  doi: 10.1287/mnsc.1080.0986
– ident: CIT0014
  doi: 10.1198/016214501753382273
– ident: CIT0005
  doi: 10.1109/LSP.2007.898300
– ident: CIT0029
  doi: 10.1016/0304-405X(80)90007-0
– ident: CIT0007
– ident: CIT0032
– ident: CIT0003
  doi: 10.1073/pnas.0904287106
– ident: CIT0019
– volume: 14
  start-page: 877
  year: 2007
  ident: CIT0004
  publication-title: J. Math. Anal. Appl.
– ident: CIT0034
  doi: 10.1007/s11432-010-0090-0
– ident: CIT0035
  doi: 10.1214/09-AOS729
SSID ssj0004146
Score 2.3258936
SecondaryResourceType review_article
Snippet In portfolio optimization, non-convex regularization has recently been recognized as an important approach to promote sparsity, while countervailing the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 434
SubjectTerms accelerated proximal algorithm
Algorithms
Empirical analysis
linear convergence
Mathematical models
non-convex regularization
Optimization
Parameters
Portfolio management
Regularization
Sharpe ratio
Sparse portfolio selection
Sparsity
turnover
Title Non-convex regularization and accelerated gradient algorithm for sparse portfolio selection
URI https://www.tandfonline.com/doi/abs/10.1080/10556788.2022.2142580
https://www.proquest.com/docview/2779960249
Volume 38
WOSCitedRecordID wos000881455900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Single Title from Taylor & Francis Online
  customDbUrl:
  eissn: 1029-4937
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004146
  issn: 1055-6788
  databaseCode: TFW
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD34hCQR5YXRLHjuMRISqmiqGISgxRHCelUklQEhA_n7PjQCuEOoCU9Zzkcvbdi-7eQ-hS0iRKwfsEUhMjTAifSOVz4ivpB4rySIfaik2I8TiaTuW96yasXVulwdB5SxRhz2qzuRNVdx1xV1bTEaAboDtKh4YzjEcGtUNlb5r6JqPH78lIN18EFsSYdDM8v62ykp1WuEt_nNU2AY12_-HR99COqz7xdRsu-2gjKw7Q9hIn4SF6GpcFsb3oH7iyQvWVG9XEcFecpCkkKsMvofGssv1iDU4Ws7KaN88vGN4EwxlV1Rk2hX1eLuYlrq3WDqxwhB5Gt5ObO-IUGEgK0LUhWnhceYolgVJ-DliQ80AqKDpC8KyXUU0VZVkomaeZoHkSRmkgecCFkmnEtQ6OUa8oi-wEYUBGOWfK8M8HDOIiibSfRHCBB6CkC_uIdZ6PU0dPblQyFrHvWEw738XGd7HzXR8Nv8xeW36OdQZy-bPGjf0xkrcqJnGwxnbQxUDstnodUyEMww3A2NM_LH2GtoyQve1uYwPUa6q37Bxtpu_NvK4ubFB_Avzd76A
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yBfXgb3E6NQevmWuatM1RxDFx7jRx4CE0TTsHs5W2in--L1mrGyI7KPT60vb1Je995b3vQ-hC0DCIwPsEUhMjzPcdIpTDiaOE4yrKA-1pKzbhDwbBaCTmZ2FMW6XB0MmMKMKe1WZzm5_RdUvcpRV1BOwG8I7StiEN4wHA9lUOudbE-rD7-D0bWU0YgQkxNvUUz2_LLOSnBfbSH6e1TUHd7f94-B20VRWg-GoWMbtoJU730OYcLeE-ehpkKbHt6B84t1r1eTWtieG2OIwiyFWGYkLjcW5bxkocTsdZPimfXzC8CoZjKi9ibGr7JJtOMlxYuR1Y4QA9dG-G1z1SiTCQCNBrSbTf4aqjWOgq5SQABzl3hYK6wwPXdmKqqaIs9gTraObTJPSCyBXc5b4SUcC1dg9RI83S-AhhAEcJZ8pQ0LsMQiMMtBMGcIEHoKrzmojVrpdRxVBuhDKm0qmITGvfSeM7WfmuidpfZq8zio5lBmL-u8rS_htJZkIm0l1i26qDQFa7vZDU9w3JDSDZ4z8sfY7We8P7vuzfDu5O0IbRtbfNbqyFGmX-Fp-itei9nBT5mY3wTx_y88A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2iInrwW1xdNQev0W2atM1R1EVRyh4UBQ-haVpdWLdLW8Wf7yRN1UXEg0Kvk7bTSWZemXkPoUNBkygF7xNITYywMPSIUB4nnhKeryiPdKCt2EQYx9H9vRi4bsLKtVUaDJ03RBH2rDabe6LztiPu2Go6AnQDdEfpkeEM4xGg9jnDLGJEDG76d5-jkW7ACEyIsWmHeH5aZio9TZGXfjusbQbqr_zDs6-iZVd-4pMmXtbQTDZeR0tfSAk30ENcjIltRn_DpVWqL92sJoa74iRNIVMZggmNH0vbMFbjZPRYlMP66RnDm2A4pMoqw6ayz4vRsMCVFduBFTbRbf_85vSCOAkGkgJ2rYkOe1z1FEt8pbwcwCDnvlBQdQTg2V5GNVWUZYFgPc1CmidBlPqC-zxUIo241v4Wmh0X42wbYYBGOWfKEND7DAIjibSXRHCBB6CmCzqItZ6XqeMnNzIZI-k5GtPWd9L4TjrfddDRh9mkIej4zUB8_ayytn9G8kbGRPq_2HbbGJBur1eShqGhuAEcu_OHpQ_QwuCsL68v46tdtGhE7W2nG-ui2bp8yfbQfPpaD6ty38b3OxUm8mQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-convex+regularization+and+accelerated+gradient+algorithm+for+sparse+portfolio+selection&rft.jtitle=Optimization+methods+%26+software&rft.au=Li%2C+Qian&rft.au=Zhang%2C+Wei&rft.au=Wang%2C+Guoqiang&rft.au=Bai%2C+Yanqin&rft.date=2023-03-04&rft.pub=Taylor+%26+Francis&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=38&rft.issue=2&rft.spage=434&rft.epage=456&rft_id=info:doi/10.1080%2F10556788.2022.2142580&rft.externalDocID=2142580
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon