Non-convex regularization and accelerated gradient algorithm for sparse portfolio selection
In portfolio optimization, non-convex regularization has recently been recognized as an important approach to promote sparsity, while countervailing the shortcomings of convex penalty. In this paper, we customize the non-convex piecewise quadratic approximation (PQA) function considering the backgro...
Saved in:
| Published in: | Optimization methods & software Vol. 38; no. 2; pp. 434 - 456 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
04.03.2023
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 1055-6788, 1029-4937 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In portfolio optimization, non-convex regularization has recently been recognized as an important approach to promote sparsity, while countervailing the shortcomings of convex penalty. In this paper, we customize the non-convex piecewise quadratic approximation (PQA) function considering the background of portfolio management and present the PQA regularized mean-variance model (PMV). By exposing the feature of PMV, we prove that a KKT point of PMV is a local minimizer if the regularization parameter satisfies a mild condition. Besides, the theoretical sparsity of PMV is analysed, which is associated with the regularization parameter and the weight parameter. To solve this model, we introduce the accelerated proximal gradient (APG) algorithm, whose improved linear convergence rate compared with proximal gradient (PG) algorithm is developed. Moreover, the optimal accelerated parameter of APG algorithm for PMV is attained. These theoretical results are further illustrated with numerical experiments. Finally, empirical analysis demonstrates that the proposed model has a better out-of-sample performance and a lower turnover than many other existing models on the tested datasets. |
|---|---|
| AbstractList | In portfolio optimization, non-convex regularization has recently been recognized as an important approach to promote sparsity, while countervailing the shortcomings of convex penalty. In this paper, we customize the non-convex piecewise quadratic approximation (PQA) function considering the background of portfolio management and present the PQA regularized mean–variance model (PMV). By exposing the feature of PMV, we prove that a KKT point of PMV is a local minimizer if the regularization parameter satisfies a mild condition. Besides, the theoretical sparsity of PMV is analysed, which is associated with the regularization parameter and the weight parameter. To solve this model, we introduce the accelerated proximal gradient (APG) algorithm, whose improved linear convergence rate compared with proximal gradient (PG) algorithm is developed. Moreover, the optimal accelerated parameter of APG algorithm for PMV is attained. These theoretical results are further illustrated with numerical experiments. Finally, empirical analysis demonstrates that the proposed model has a better out-of-sample performance and a lower turnover than many other existing models on the tested datasets. |
| Author | Li, Qian Wang, Guoqiang Zhang, Wei Bai, Yanqin |
| Author_xml | – sequence: 1 givenname: Qian surname: Li fullname: Li, Qian email: liqian15123329166@163.com organization: Shanghai University of Engineering Science – sequence: 2 givenname: Wei surname: Zhang fullname: Zhang, Wei organization: South China University of Technology – sequence: 3 givenname: Guoqiang surname: Wang fullname: Wang, Guoqiang organization: Shanghai University of Engineering Science – sequence: 4 givenname: Yanqin surname: Bai fullname: Bai, Yanqin organization: Shanghai University |
| BookMark | eNqFkLtOAzEQRS0EEiTwCUiWqDd4_diHaEARLymCBioKy2t7g6ONHcYOEL6eXQINBVQzxZw7M2eEdn3wFqHjnExyUpHTnAhRlFU1oYTSCc05FRXZQQc5oXXGa1buDr0Q2TC0j0YxLgghPOfFAXq6Cz7Twb_adwx2vu4UuA-VXPBYeYOV1razoJI1eA7KOOsTVt08gEvPS9wGwHGlIFq8CpDa0LmAY0_oIeEQ7bWqi_bou47R49Xlw_Qmm91f304vZplmrEqZKYloSMMVa5q8rXh_KaubkrOiv5FYamhDuS1qTgwvaauKSrNaMFE2ta6EMWyMTra5KwgvaxuTXIQ1-H6lpGVZ1wWhvYUxOttOaQgxgm2ldunr0wTKdTIncrApf2zKwab8ttnT4he9ArdUsPmXO99yzveyluotQGdkUpsuQAvKaxcl-zviE14Vji4 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_124299 crossref_primary_10_1007_s12351_024_00867_0 |
| Cites_doi | 10.1093/rfs/hhm075 10.1007/s11425-017-9315-9 10.1287/opre.1080.0566 10.1109/TSP.2009.2026004 10.1111/1540-6261.00580 10.1007/s10107-015-0871-8 10.1007/s11590-016-1054-0 10.1016/S0927-5398(03)00007-0 10.1137/16M1055323 10.1137/080716542 10.1007/s10479-019-03289-w 10.1007/s10287-014-0227-5 10.1007/BF00940067 10.1137/0716071 10.1007/s10898-022-01257-6 10.1007/s10107-012-0629-5 10.2307/2975974 10.1016/j.ejor.2013.02.016 10.1007/s10898-012-9842-2 10.1007/s10107-014-0753-5 10.1088/0266-5611/24/3/035020 10.1007/s10589-018-0049-4 10.1080/01621459.2012.682825 10.1287/mnsc.1080.0986 10.1198/016214501753382273 10.1109/LSP.2007.898300 10.1016/0304-405X(80)90007-0 10.1073/pnas.0904287106 10.1007/s11432-010-0090-0 10.1214/09-AOS729 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1080/10556788.2022.2142580 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-4937 |
| EndPage | 456 |
| ExternalDocumentID | 10_1080_10556788_2022_2142580 2142580 |
| Genre | Review |
| GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c338t-d705b0b4a3bb1f8405539b74360410e2d2b24e6940d472fa68c395357b9c85dd3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000881455900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1055-6788 |
| IngestDate | Wed Aug 13 07:39:46 EDT 2025 Tue Nov 18 20:38:48 EST 2025 Sat Nov 29 02:36:07 EST 2025 Mon Oct 20 23:46:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-d705b0b4a3bb1f8405539b74360410e2d2b24e6940d472fa68c395357b9c85dd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2779960249 |
| PQPubID | 186278 |
| PageCount | 23 |
| ParticipantIDs | crossref_primary_10_1080_10556788_2022_2142580 proquest_journals_2779960249 crossref_citationtrail_10_1080_10556788_2022_2142580 informaworld_taylorfrancis_310_1080_10556788_2022_2142580 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-04 |
| PublicationDateYYYYMMDD | 2023-03-04 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Optimization methods & software |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0010 CIT0032 CIT0012 CIT0034 CIT0011 CIT0033 Sun W.Y. (CIT0031) 2006 CIT0014 CIT0013 CIT0035 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 Candés E.J. (CIT0004) 2007; 14 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0012 doi: 10.1093/rfs/hhm075 – ident: CIT0024 doi: 10.1007/s11425-017-9315-9 – ident: CIT0013 doi: 10.1287/opre.1080.0566 – ident: CIT0017 doi: 10.1109/TSP.2009.2026004 – ident: CIT0022 doi: 10.1111/1540-6261.00580 – ident: CIT0018 doi: 10.1007/s10107-015-0871-8 – ident: CIT0021 doi: 10.1007/s11590-016-1054-0 – ident: CIT0023 doi: 10.1016/S0927-5398(03)00007-0 – ident: CIT0033 doi: 10.1137/16M1055323 – ident: CIT0001 doi: 10.1137/080716542 – ident: CIT0009 doi: 10.1007/s10479-019-03289-w – ident: CIT0016 doi: 10.1007/s10287-014-0227-5 – ident: CIT0020 doi: 10.1007/BF00940067 – ident: CIT0027 doi: 10.1137/0716071 – ident: CIT0025 doi: 10.1007/s10898-022-01257-6 – ident: CIT0030 doi: 10.1007/s10107-012-0629-5 – ident: CIT0028 doi: 10.2307/2975974 – ident: CIT0026 doi: 10.1016/j.ejor.2013.02.016 – ident: CIT0010 doi: 10.1007/s10898-012-9842-2 – ident: CIT0002 doi: 10.1007/s10107-014-0753-5 – volume-title: Optimization Theory and Methods: Nonlinear Programming year: 2006 ident: CIT0031 – ident: CIT0006 doi: 10.1088/0266-5611/24/3/035020 – ident: CIT0008 doi: 10.1007/s10589-018-0049-4 – ident: CIT0015 doi: 10.1080/01621459.2012.682825 – ident: CIT0011 doi: 10.1287/mnsc.1080.0986 – ident: CIT0014 doi: 10.1198/016214501753382273 – ident: CIT0005 doi: 10.1109/LSP.2007.898300 – ident: CIT0029 doi: 10.1016/0304-405X(80)90007-0 – ident: CIT0007 – ident: CIT0032 – ident: CIT0003 doi: 10.1073/pnas.0904287106 – ident: CIT0019 – volume: 14 start-page: 877 year: 2007 ident: CIT0004 publication-title: J. Math. Anal. Appl. – ident: CIT0034 doi: 10.1007/s11432-010-0090-0 – ident: CIT0035 doi: 10.1214/09-AOS729 |
| SSID | ssj0004146 |
| Score | 2.3258936 |
| SecondaryResourceType | review_article |
| Snippet | In portfolio optimization, non-convex regularization has recently been recognized as an important approach to promote sparsity, while countervailing the... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 434 |
| SubjectTerms | accelerated proximal algorithm Algorithms Empirical analysis linear convergence Mathematical models non-convex regularization Optimization Parameters Portfolio management Regularization Sharpe ratio Sparse portfolio selection Sparsity turnover |
| Title | Non-convex regularization and accelerated gradient algorithm for sparse portfolio selection |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10556788.2022.2142580 https://www.proquest.com/docview/2779960249 |
| Volume | 38 |
| WOSCitedRecordID | wos000881455900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Single Title from Taylor & Francis Online customDbUrl: eissn: 1029-4937 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004146 issn: 1055-6788 databaseCode: TFW dateStart: 19920101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD34hCQR5YXRLHjuMRISqmiqGISgxRHCelUklQEhA_n7PjQCuEOoCU9Zzkcvbdi-7eQ-hS0iRKwfsEUhMjTAifSOVz4ivpB4rySIfaik2I8TiaTuW96yasXVulwdB5SxRhz2qzuRNVdx1xV1bTEaAboDtKh4YzjEcGtUNlb5r6JqPH78lIN18EFsSYdDM8v62ykp1WuEt_nNU2AY12_-HR99COqz7xdRsu-2gjKw7Q9hIn4SF6GpcFsb3oH7iyQvWVG9XEcFecpCkkKsMvofGssv1iDU4Ws7KaN88vGN4EwxlV1Rk2hX1eLuYlrq3WDqxwhB5Gt5ObO-IUGEgK0LUhWnhceYolgVJ-DliQ80AqKDpC8KyXUU0VZVkomaeZoHkSRmkgecCFkmnEtQ6OUa8oi-wEYUBGOWfK8M8HDOIiibSfRHCBB6CkC_uIdZ6PU0dPblQyFrHvWEw738XGd7HzXR8Nv8xeW36OdQZy-bPGjf0xkrcqJnGwxnbQxUDstnodUyEMww3A2NM_LH2GtoyQve1uYwPUa6q37Bxtpu_NvK4ubFB_Avzd76A |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yBfXgb3E6NQevmWuatM1RxDFx7jRx4CE0TTsHs5W2in--L1mrGyI7KPT60vb1Je995b3vQ-hC0DCIwPsEUhMjzPcdIpTDiaOE4yrKA-1pKzbhDwbBaCTmZ2FMW6XB0MmMKMKe1WZzm5_RdUvcpRV1BOwG8I7StiEN4wHA9lUOudbE-rD7-D0bWU0YgQkxNvUUz2_LLOSnBfbSH6e1TUHd7f94-B20VRWg-GoWMbtoJU730OYcLeE-ehpkKbHt6B84t1r1eTWtieG2OIwiyFWGYkLjcW5bxkocTsdZPimfXzC8CoZjKi9ibGr7JJtOMlxYuR1Y4QA9dG-G1z1SiTCQCNBrSbTf4aqjWOgq5SQABzl3hYK6wwPXdmKqqaIs9gTraObTJPSCyBXc5b4SUcC1dg9RI83S-AhhAEcJZ8pQ0LsMQiMMtBMGcIEHoKrzmojVrpdRxVBuhDKm0qmITGvfSeM7WfmuidpfZq8zio5lBmL-u8rS_htJZkIm0l1i26qDQFa7vZDU9w3JDSDZ4z8sfY7We8P7vuzfDu5O0IbRtbfNbqyFGmX-Fp-itei9nBT5mY3wTx_y88A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2iInrwW1xdNQev0W2atM1R1EVRyh4UBQ-haVpdWLdLW8Wf7yRN1UXEg0Kvk7bTSWZemXkPoUNBkygF7xNITYywMPSIUB4nnhKeryiPdKCt2EQYx9H9vRi4bsLKtVUaDJ03RBH2rDabe6LztiPu2Go6AnQDdEfpkeEM4xGg9jnDLGJEDG76d5-jkW7ACEyIsWmHeH5aZio9TZGXfjusbQbqr_zDs6-iZVd-4pMmXtbQTDZeR0tfSAk30ENcjIltRn_DpVWqL92sJoa74iRNIVMZggmNH0vbMFbjZPRYlMP66RnDm2A4pMoqw6ayz4vRsMCVFduBFTbRbf_85vSCOAkGkgJ2rYkOe1z1FEt8pbwcwCDnvlBQdQTg2V5GNVWUZYFgPc1CmidBlPqC-zxUIo241v4Wmh0X42wbYYBGOWfKEND7DAIjibSXRHCBB6CmCzqItZ6XqeMnNzIZI-k5GtPWd9L4TjrfddDRh9mkIej4zUB8_ayytn9G8kbGRPq_2HbbGJBur1eShqGhuAEcu_OHpQ_QwuCsL68v46tdtGhE7W2nG-ui2bp8yfbQfPpaD6ty38b3OxUm8mQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-convex+regularization+and+accelerated+gradient+algorithm+for+sparse+portfolio+selection&rft.jtitle=Optimization+methods+%26+software&rft.au=Li%2C+Qian&rft.au=Zhang%2C+Wei&rft.au=Wang%2C+Guoqiang&rft.au=Bai%2C+Yanqin&rft.date=2023-03-04&rft.pub=Taylor+%26+Francis&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=38&rft.issue=2&rft.spage=434&rft.epage=456&rft_id=info:doi/10.1080%2F10556788.2022.2142580&rft.externalDocID=2142580 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon |