Efficiency enhancement of a commercial natural gas liquid recovery plant: A MINLP optimization analysis

This paper aims at modeling and optimizing a Middle East-based commercial natural gas liquid (NGL) recovery and fractionation plant, using a predictive process simulator. NGL units are known to be highly energy-intensive as steam-based heating and refrigeration-based cryogenic cooling are critical r...

Full description

Saved in:
Bibliographic Details
Published in:Separation science and technology Vol. 55; no. 5; pp. 955 - 966
Main Authors: Murali, Ashwin, Berrouk, Abdallah S., Dara, Satyadileep, AlWahedi, Yasser F., Adegunju, Sulaimon, Abdulla, Haitham Salmeen, Das, Anjan Kumar, Yousif, Nafisa, Hosani, Mariam Al
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 23.03.2020
Taylor & Francis Ltd
Subjects:
ISSN:0149-6395, 1520-5754
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper aims at modeling and optimizing a Middle East-based commercial natural gas liquid (NGL) recovery and fractionation plant, using a predictive process simulator. NGL units are known to be highly energy-intensive as steam-based heating and refrigeration-based cryogenic cooling are critical requirements for their operation. Indeed, these units govern the degree of profitability of gas plants especially during low natural gas price scenarios. As a result, this study explores the ways of improving the performance of NGL units through a deterministic optimization analysis. A steady state model of the plant is built using gPROMS process builder followed by validation using plant data to ensure the model accuracy. A mixed integer nonlinear programming optimization problem is formulated with the objective of maximizing the net revenue of the plants by means of manipulating various decision variables such as feed gas temperature, column operating pressure, feed stage location, reflux and boil up ratios subject to specific process constraints. Optimization problem is solved using outer approximation equality relaxation augmented penalty algorithm. It is determined that the process optimization yields an additional revenue of 4.1 MM USD annually due to ~22% increase in Liquefied Petroleum Gas (LPG) production, ~6% increase in Naphtha production, and ~16% reduction in steam consumption in the reboiler of the columns.
AbstractList This paper aims at modeling and optimizing a Middle East-based commercial natural gas liquid (NGL) recovery and fractionation plant, using a predictive process simulator. NGL units are known to be highly energy-intensive as steam-based heating and refrigeration-based cryogenic cooling are critical requirements for their operation. Indeed, these units govern the degree of profitability of gas plants especially during low natural gas price scenarios. As a result, this study explores the ways of improving the performance of NGL units through a deterministic optimization analysis. A steady state model of the plant is built using gPROMS process builder followed by validation using plant data to ensure the model accuracy. A mixed integer nonlinear programming optimization problem is formulated with the objective of maximizing the net revenue of the plants by means of manipulating various decision variables such as feed gas temperature, column operating pressure, feed stage location, reflux and boil up ratios subject to specific process constraints. Optimization problem is solved using outer approximation equality relaxation augmented penalty algorithm. It is determined that the process optimization yields an additional revenue of 4.1 MM USD annually due to ~22% increase in Liquefied Petroleum Gas (LPG) production, ~6% increase in Naphtha production, and ~16% reduction in steam consumption in the reboiler of the columns.
This paper aims at modeling and optimizing a Middle East-based commercial natural gas liquid (NGL) recovery and fractionation plant, using a predictive process simulator. NGL units are known to be highly energy-intensive as steam-based heating and refrigeration-based cryogenic cooling are critical requirements for their operation. Indeed, these units govern the degree of profitability of gas plants especially during low natural gas price scenarios. As a result, this study explores the ways of improving the performance of NGL units through a deterministic optimization analysis. A steady state model of the plant is built using gPROMS process builder followed by validation using plant data to ensure the model accuracy. A mixed integer nonlinear programming optimization problem is formulated with the objective of maximizing the net revenue of the plants by means of manipulating various decision variables such as feed gas temperature, column operating pressure, feed stage location, reflux and boil up ratios subject to specific process constraints. Optimization problem is solved using outer approximation equality relaxation augmented penalty algorithm. It is determined that the process optimization yields an additional revenue of 4.1 MM USD annually due to ~22% increase in Liquefied Petroleum Gas (LPG) production, ~6% increase in Naphtha production, and ~16% reduction in steam consumption in the reboiler of the columns.
Author Berrouk, Abdallah S.
Das, Anjan Kumar
Adegunju, Sulaimon
Dara, Satyadileep
Abdulla, Haitham Salmeen
Hosani, Mariam Al
AlWahedi, Yasser F.
Murali, Ashwin
Yousif, Nafisa
Author_xml – sequence: 1
  givenname: Ashwin
  surname: Murali
  fullname: Murali, Ashwin
  organization: Department of Chemical Engineering, Khalifa University of Science and Technology, The Petroleum Institute
– sequence: 2
  givenname: Abdallah S.
  orcidid: 0000-0001-7616-726X
  surname: Berrouk
  fullname: Berrouk, Abdallah S.
  email: abdallah.berrouk@ku.ac.ae
  organization: Center for Catalysis and Separation, Khalifa University of Science and Technology
– sequence: 3
  givenname: Satyadileep
  surname: Dara
  fullname: Dara, Satyadileep
  organization: Department of Chemical Engineering, Khalifa University of Science and Technology, The Petroleum Institute
– sequence: 4
  givenname: Yasser F.
  surname: AlWahedi
  fullname: AlWahedi, Yasser F.
  organization: Center for Catalysis and Separation, Khalifa University of Science and Technology
– sequence: 5
  givenname: Sulaimon
  surname: Adegunju
  fullname: Adegunju, Sulaimon
  organization: Department of Chemical Engineering, Khalifa University of Science and Technology, The Petroleum Institute
– sequence: 6
  givenname: Haitham Salmeen
  surname: Abdulla
  fullname: Abdulla, Haitham Salmeen
  organization: Process Engineering & Energy Engineering Division, ADNOC LNG
– sequence: 7
  givenname: Anjan Kumar
  surname: Das
  fullname: Das, Anjan Kumar
  organization: Process Engineering & Energy Engineering Division, ADNOC LNG
– sequence: 8
  givenname: Nafisa
  surname: Yousif
  fullname: Yousif, Nafisa
  organization: Process Engineering & Energy Engineering Division, ADNOC LNG
– sequence: 9
  givenname: Mariam Al
  surname: Hosani
  fullname: Hosani, Mariam Al
  organization: Process Engineering & Energy Engineering Division, ADNOC LNG
BookMark eNqFkE1v1DAURS3USkxbfgKSJdYZ_BknsKGqClQaWhawtp6c5-Iqsae2BxR-PQlTNixg9TbnXt13zshJTBEJecnZlrOOvWZc9a3s9VYw3m-5NqoT-hnZcC1Yo41WJ2SzMs0KPSdnpTwwxjrd9xtyf-19cAGjmynGbxAdThgrTZ4CdWmaMLsAI41QD3m591DoGB4PYaAZXfqOeab7EWJ9Qy_pp5vb3Wea9jVM4SfUkCKFCONcQrkgpx7Ggi-e7jn5-v76y9XHZnf34ebqctc4KbvaDK0SLZpB94Yx49C0pus7p1AZxT12sneOo0cYvG61Wh-SOMhBgBFeIchz8urYu8_p8YCl2od0yMuIYoXUQnS8VXqh3h4pl1MpGb11of4eXDOE0XJmV7P2j1m7mrVPZpe0_iu9z2GCPP839-6YC9GnPMGPlMfBVpjHlH1e1Idi5b8rfgGNTZJn
CitedBy_id crossref_primary_10_3390_polym14153133
crossref_primary_10_1016_j_ifacol_2022_10_158
crossref_primary_10_3389_fenrg_2021_798896
crossref_primary_10_1080_00207543_2024_2346185
Cites_doi 10.1016/j.cherd.2009.11.003
10.1201/b14397
10.1016/B978-088415822-6/50008-8
10.1016/j.fluid.2013.07.029
10.1016/j.applthermaleng.2016.11.142
10.1016/j.jngse.2014.12.023
10.1016/j.enconman.2016.06.069
10.1016/j.cherd.2010.09.021
10.1016/j.jngse.2015.01.028
10.1016/0378-3812(91)85038-V
10.1016/j.fuproc.2014.06.012
10.1007/BF02698286
10.1016/j.cherd.2013.01.015
10.1016/0950-4214(91)80029-5
10.1016/S0098-1354(99)80204-X
10.1016/j.jngse.2012.03.003
10.1002/cjce.20359
10.1016/0098-1354(95)87034-2
10.1016/0098-1354(96)00255-4
10.1016/0098-1354(89)85042-2
10.1016/0098-1354(90)87085-4
ContentType Journal Article
Copyright 2019 Taylor & Francis 2019
2019 Taylor & Francis
Copyright_xml – notice: 2019 Taylor & Francis 2019
– notice: 2019 Taylor & Francis
DBID AAYXX
CITATION
7QF
7QH
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7UA
8BQ
8FD
C1K
F1W
F28
FR3
H8D
H8G
H97
JG9
JQ2
KR7
L.G
L7M
L~C
L~D
P64
DOI 10.1080/01496395.2019.1574825
DatabaseName CrossRef
Aluminium Industry Abstracts
Aqualine
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Materials Business File
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Aqualine
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Economics
EISSN 1520-5754
EndPage 966
ExternalDocumentID 10_1080_01496395_2019_1574825
1574825
Genre Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
123
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GCUZY
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NW0
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TCY
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
WH7
ZGOLN
~02
~S~
AAYXX
CITATION
7QF
7QH
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7UA
8BQ
8FD
C1K
F1W
F28
FR3
H8D
H8G
H97
JG9
JQ2
KR7
L.G
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c338t-d6426e7d597007ce767898c4e4741fe839cc1efeadf565463953ed3d2a72f4ea3
IEDL.DBID TFW
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526702000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0149-6395
IngestDate Wed Aug 13 11:14:31 EDT 2025
Sat Nov 29 04:54:56 EST 2025
Tue Nov 18 22:21:16 EST 2025
Mon Oct 20 23:48:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-d6426e7d597007ce767898c4e4741fe839cc1efeadf565463953ed3d2a72f4ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7616-726X
PQID 2352281645
PQPubID 2045228
PageCount 12
ParticipantIDs crossref_citationtrail_10_1080_01496395_2019_1574825
crossref_primary_10_1080_01496395_2019_1574825
proquest_journals_2352281645
informaworld_taylorfrancis_310_1080_01496395_2019_1574825
PublicationCentury 2000
PublicationDate 2020-03-23
PublicationDateYYYYMMDD 2020-03-23
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-23
  day: 23
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Separation science and technology
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0012
CIT0011
CIT0014
CIT0013
Chandra V. (CIT0001) 2006
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0022
Fouad W.A. (CIT0026) 2011; 109
Smil V. (CIT0002) 2015
Lee S.H. (CIT0030) 2011; 90
Russell T.F. (CIT0023) 1972
Russell T. (CIT0004) 1977; 75
CIT0003
CIT0025
CIT0024
CIT0005
CIT0027
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0021
– ident: CIT0013
  doi: 10.1016/j.cherd.2009.11.003
– ident: CIT0007
  doi: 10.1201/b14397
– ident: CIT0005
  doi: 10.1016/B978-088415822-6/50008-8
– ident: CIT0025
  doi: 10.1016/j.fluid.2013.07.029
– ident: CIT0020
  doi: 10.1016/j.applthermaleng.2016.11.142
– ident: CIT0017
  doi: 10.1016/j.jngse.2014.12.023
– ident: CIT0019
  doi: 10.1016/j.enconman.2016.06.069
– ident: CIT0006
– ident: CIT0015
  doi: 10.1016/j.cherd.2010.09.021
– ident: CIT0003
  doi: 10.1016/j.jngse.2015.01.028
– ident: CIT0022
  doi: 10.1016/0378-3812(91)85038-V
– ident: CIT0027
  doi: 10.1016/j.fuproc.2014.06.012
– ident: CIT0029
  doi: 10.1007/BF02698286
– ident: CIT0016
  doi: 10.1016/j.cherd.2013.01.015
– ident: CIT0010
  doi: 10.1016/0950-4214(91)80029-5
– ident: CIT0008
– ident: CIT0028
  doi: 10.1016/S0098-1354(99)80204-X
– ident: CIT0018
  doi: 10.1016/j.jngse.2012.03.003
– ident: CIT0014
  doi: 10.1002/cjce.20359
– volume-title: Natural Gas: Fuel for the 21st Century
  year: 2015
  ident: CIT0002
– ident: CIT0011
  doi: 10.1016/0098-1354(95)87034-2
– volume: 75
  start-page: 66
  issue: 4
  year: 1977
  ident: CIT0004
  publication-title: Oil & Gas Journal
– ident: CIT0012
  doi: 10.1016/0098-1354(96)00255-4
– volume-title: Fundamentals of Natural Gas: An International Perspective
  year: 2006
  ident: CIT0001
– volume-title: Introduction to Chemical Engineering Analysis
  year: 1972
  ident: CIT0023
– volume: 109
  start-page: 112
  issue: 18
  year: 2011
  ident: CIT0026
  publication-title: Oil & Gas Journal
– volume: 90
  start-page: 101
  issue: 6
  year: 2011
  ident: CIT0030
  publication-title: Hydrocarbon Processing
– ident: CIT0009
  doi: 10.1016/0098-1354(89)85042-2
– ident: CIT0024
  doi: 10.1016/0098-1354(90)87085-4
SSID ssj0008599
Score 2.2703807
Snippet This paper aims at modeling and optimizing a Middle East-based commercial natural gas liquid (NGL) recovery and fractionation plant, using a predictive process...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 955
SubjectTerms Algorithms
Approximation
Computer simulation
Cryogenic cooling
distillation
Economics
Feeds
Fractionation
Gas temperature
gPROMS
Heating
Liquefied natural gas
Liquefied petroleum gas
Mixed integer
Model accuracy
Naphtha
Natural gas
Natural gas liquids
Natural gas prices
NGL recovery process
Nonlinear programming
Optimization
Profitability
Ratios
Recovery
Refrigeration
Revenue
simulation
Simulators
Steady state models
Steam consumption
Title Efficiency enhancement of a commercial natural gas liquid recovery plant: A MINLP optimization analysis
URI https://www.tandfonline.com/doi/abs/10.1080/01496395.2019.1574825
https://www.proquest.com/docview/2352281645
Volume 55
WOSCitedRecordID wos000526702000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1520-5754
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008599
  issn: 0149-6395
  databaseCode: TFW
  dateStart: 19780101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QQgIOPAaI8VIOXANtkq4tt2naBBJMHMbjVqV5wKTRwboh8e-xuxSBEOIAp56ctrFj-4vsz4QcpxHPA8sFi7RRTEqdMsAqKct5Kwl0Hsq8YmK6vYz7_eT-Pr321YSlL6tEDO3mRBGVr8bDrfKyrog7xaweAmuEhVnpSRjFEmAOeGHI7LGob9C7-_DFSVRNkEQJhiJ1D89Pq3yJTl-4S7_56ioA9db_4dM3yJrPPml7bi6bZMEWDbLcqYe-NcjqJ37CLfLQrQgmsDuT2uIRDQQvE-nYUUXhxU84rgnWq9hB4fmgSjoavsyGhiLQhlPyRp9HoLsz2qZXF_3LazoGF_Xkez-p8owo2-Sm1x10zpmfzMA0QNopM4BaWjY2gEYgx9A2hpCXJlpaCQmKs5B0aR1aB1bqIuyWgj8W1gjDVcydtErskMViXNhdQnMnE6lEKw91KDU3KVfghXRgQhM4EfImkbVGMu1py3F6xigLa3ZTv6cZ7mnm97RJTj7Enue8Hb8JpJ_VnU2rCxM3n26SiV9kD2rbyLwLKDOOqW0CaDTa-8PS-2SFI8IPBOPigCxOJzN7SJb063RYTo4qY38H3qr5bQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2xScCBHbHjA1dDYjtNwg0hKhCl4lCWm5V4KZVKC7Qg8ffMpAkqQogDnHIaJ7HHM_Msz3sAB2kk8sAJySNjM66USTlilZTnopYEJg9VXjAx3TbiZjO5v0_He2HoWiVhaD8iiihiNW1uOoyursQdUVmPmTWim1npYRjFCnHOJEyTOh0BsFb97jMaJ1GhIUkmnGyqLp6fhvmSn76wl36L1kUKqi_-x8cvwUJZgLKTkccsw4TrrcDsaaX7tgLzYxSFq9A-KzgmqEGTud4D-QidJ7K-ZxnDNz-SYhOOVxCE4rOdDVi38_zasYywNm6Ud_bUxeU7Zifs6qLZuGZ9jFKPZfsny0pSlDW4qZ-1Ts95Kc7ADaLaIbcIXGoutghIsMwwLsaslyZGOYU1indYdxkTOo-O6iNqmMI_ls5KK7JYeOUyuQ5TvX7PbQDLvUpUJmt5aEJlhE1FhoHIBDa0gZeh2ARVLYk2JXM5CWh0dVgRnJZzqmlOdTmnm3D4afY0ou74zSAdX289LM5M_EjgRMtfbHcq59BlFBhoQdVtgoA02vrD0Pswe966aujGRfNyG-YEAf5AciF3YGr48up2Yca8DTuDl73C8z8An4H9kA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB7RgEp74I1Kee2h16X27jq2uSEgAhGiHGjhtrL3ESKFJJCkUv89M84agaqKQ3vyadb2zuzMfKuZbwC-5YkoIyckT4wtuFIm54hVcl6KZhaZMlZlxcT0s512OtndXd4N1YSTUFZJGNrPiSIqX02He2x9XRH3nbJ6DKwJFWblR3GSKoQ5H2ARU-eEDPumdfvijLOkGiFJIpxk6iaevy3zJjy9IS_9w1lXEai1-h--fQ1WQvrJTub2sg4LbrgBy6f11LcN-PyKoHATeucVwwS1ZzI3vCcLodtENvKsYPjiB5rXhOtV9KD47BUTNug_zvqWEdLGY_KbjQeovGN2wq4vO-0uG6GPegjNn6wIlChb8KN1fnN6wcNoBm4Q0065RdjSdKlFOIJJhnEpxrw8M8opzFC8w6zLmNh5NFOfULsU_rF0VlpRpMIrV8htaAxHQ_cFWOlVpgrZLGMTKyNsLgp0QyaysY28jMUOqFoj2gTechqfMdBxTW8a9lTTnuqwpztw9CI2nhN3vCeQv1a3nlY3Jn4-3kTLd2T3atvQwQdMtKDcNkM4mnz9h6UP4WP3rKXbl52rXfgkCO1Hkgu5B43p08ztw5L5Ne1Png4qu38Gm5b8Qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiency+enhancement+of+a+commercial+natural+gas+liquid+recovery+plant%3A+A+MINLP+optimization+analysis&rft.jtitle=Separation+science+and+technology&rft.au=Murali%2C+Ashwin&rft.au=Berrouk%2C+Abdallah+S.&rft.au=Dara%2C+Satyadileep&rft.au=AlWahedi%2C+Yasser+F.&rft.date=2020-03-23&rft.pub=Taylor+%26+Francis&rft.issn=0149-6395&rft.eissn=1520-5754&rft.volume=55&rft.issue=5&rft.spage=955&rft.epage=966&rft_id=info:doi/10.1080%2F01496395.2019.1574825&rft.externalDocID=1574825
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-6395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-6395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-6395&client=summon