Efficiency enhancement of a commercial natural gas liquid recovery plant: A MINLP optimization analysis
This paper aims at modeling and optimizing a Middle East-based commercial natural gas liquid (NGL) recovery and fractionation plant, using a predictive process simulator. NGL units are known to be highly energy-intensive as steam-based heating and refrigeration-based cryogenic cooling are critical r...
Saved in:
| Published in: | Separation science and technology Vol. 55; no. 5; pp. 955 - 966 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
23.03.2020
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0149-6395, 1520-5754 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper aims at modeling and optimizing a Middle East-based commercial natural gas liquid (NGL) recovery and fractionation plant, using a predictive process simulator. NGL units are known to be highly energy-intensive as steam-based heating and refrigeration-based cryogenic cooling are critical requirements for their operation. Indeed, these units govern the degree of profitability of gas plants especially during low natural gas price scenarios. As a result, this study explores the ways of improving the performance of NGL units through a deterministic optimization analysis. A steady state model of the plant is built using gPROMS process builder followed by validation using plant data to ensure the model accuracy. A mixed integer nonlinear programming optimization problem is formulated with the objective of maximizing the net revenue of the plants by means of manipulating various decision variables such as feed gas temperature, column operating pressure, feed stage location, reflux and boil up ratios subject to specific process constraints. Optimization problem is solved using outer approximation equality relaxation augmented penalty algorithm. It is determined that the process optimization yields an additional revenue of 4.1 MM USD annually due to ~22% increase in Liquefied Petroleum Gas (LPG) production, ~6% increase in Naphtha production, and ~16% reduction in steam consumption in the reboiler of the columns. |
|---|---|
| AbstractList | This paper aims at modeling and optimizing a Middle East-based commercial natural gas liquid (NGL) recovery and fractionation plant, using a predictive process simulator. NGL units are known to be highly energy-intensive as steam-based heating and refrigeration-based cryogenic cooling are critical requirements for their operation. Indeed, these units govern the degree of profitability of gas plants especially during low natural gas price scenarios. As a result, this study explores the ways of improving the performance of NGL units through a deterministic optimization analysis. A steady state model of the plant is built using gPROMS process builder followed by validation using plant data to ensure the model accuracy. A mixed integer nonlinear programming optimization problem is formulated with the objective of maximizing the net revenue of the plants by means of manipulating various decision variables such as feed gas temperature, column operating pressure, feed stage location, reflux and boil up ratios subject to specific process constraints. Optimization problem is solved using outer approximation equality relaxation augmented penalty algorithm. It is determined that the process optimization yields an additional revenue of 4.1 MM USD annually due to ~22% increase in Liquefied Petroleum Gas (LPG) production, ~6% increase in Naphtha production, and ~16% reduction in steam consumption in the reboiler of the columns. This paper aims at modeling and optimizing a Middle East-based commercial natural gas liquid (NGL) recovery and fractionation plant, using a predictive process simulator. NGL units are known to be highly energy-intensive as steam-based heating and refrigeration-based cryogenic cooling are critical requirements for their operation. Indeed, these units govern the degree of profitability of gas plants especially during low natural gas price scenarios. As a result, this study explores the ways of improving the performance of NGL units through a deterministic optimization analysis. A steady state model of the plant is built using gPROMS process builder followed by validation using plant data to ensure the model accuracy. A mixed integer nonlinear programming optimization problem is formulated with the objective of maximizing the net revenue of the plants by means of manipulating various decision variables such as feed gas temperature, column operating pressure, feed stage location, reflux and boil up ratios subject to specific process constraints. Optimization problem is solved using outer approximation equality relaxation augmented penalty algorithm. It is determined that the process optimization yields an additional revenue of 4.1 MM USD annually due to ~22% increase in Liquefied Petroleum Gas (LPG) production, ~6% increase in Naphtha production, and ~16% reduction in steam consumption in the reboiler of the columns. |
| Author | Berrouk, Abdallah S. Das, Anjan Kumar Adegunju, Sulaimon Dara, Satyadileep Abdulla, Haitham Salmeen Hosani, Mariam Al AlWahedi, Yasser F. Murali, Ashwin Yousif, Nafisa |
| Author_xml | – sequence: 1 givenname: Ashwin surname: Murali fullname: Murali, Ashwin organization: Department of Chemical Engineering, Khalifa University of Science and Technology, The Petroleum Institute – sequence: 2 givenname: Abdallah S. orcidid: 0000-0001-7616-726X surname: Berrouk fullname: Berrouk, Abdallah S. email: abdallah.berrouk@ku.ac.ae organization: Center for Catalysis and Separation, Khalifa University of Science and Technology – sequence: 3 givenname: Satyadileep surname: Dara fullname: Dara, Satyadileep organization: Department of Chemical Engineering, Khalifa University of Science and Technology, The Petroleum Institute – sequence: 4 givenname: Yasser F. surname: AlWahedi fullname: AlWahedi, Yasser F. organization: Center for Catalysis and Separation, Khalifa University of Science and Technology – sequence: 5 givenname: Sulaimon surname: Adegunju fullname: Adegunju, Sulaimon organization: Department of Chemical Engineering, Khalifa University of Science and Technology, The Petroleum Institute – sequence: 6 givenname: Haitham Salmeen surname: Abdulla fullname: Abdulla, Haitham Salmeen organization: Process Engineering & Energy Engineering Division, ADNOC LNG – sequence: 7 givenname: Anjan Kumar surname: Das fullname: Das, Anjan Kumar organization: Process Engineering & Energy Engineering Division, ADNOC LNG – sequence: 8 givenname: Nafisa surname: Yousif fullname: Yousif, Nafisa organization: Process Engineering & Energy Engineering Division, ADNOC LNG – sequence: 9 givenname: Mariam Al surname: Hosani fullname: Hosani, Mariam Al organization: Process Engineering & Energy Engineering Division, ADNOC LNG |
| BookMark | eNqFkE1v1DAURS3USkxbfgKSJdYZ_BknsKGqClQaWhawtp6c5-Iqsae2BxR-PQlTNixg9TbnXt13zshJTBEJecnZlrOOvWZc9a3s9VYw3m-5NqoT-hnZcC1Yo41WJ2SzMs0KPSdnpTwwxjrd9xtyf-19cAGjmynGbxAdThgrTZ4CdWmaMLsAI41QD3m591DoGB4PYaAZXfqOeab7EWJ9Qy_pp5vb3Wea9jVM4SfUkCKFCONcQrkgpx7Ggi-e7jn5-v76y9XHZnf34ebqctc4KbvaDK0SLZpB94Yx49C0pus7p1AZxT12sneOo0cYvG61Wh-SOMhBgBFeIchz8urYu8_p8YCl2od0yMuIYoXUQnS8VXqh3h4pl1MpGb11of4eXDOE0XJmV7P2j1m7mrVPZpe0_iu9z2GCPP839-6YC9GnPMGPlMfBVpjHlH1e1Idi5b8rfgGNTZJn |
| CitedBy_id | crossref_primary_10_3390_polym14153133 crossref_primary_10_1016_j_ifacol_2022_10_158 crossref_primary_10_3389_fenrg_2021_798896 crossref_primary_10_1080_00207543_2024_2346185 |
| Cites_doi | 10.1016/j.cherd.2009.11.003 10.1201/b14397 10.1016/B978-088415822-6/50008-8 10.1016/j.fluid.2013.07.029 10.1016/j.applthermaleng.2016.11.142 10.1016/j.jngse.2014.12.023 10.1016/j.enconman.2016.06.069 10.1016/j.cherd.2010.09.021 10.1016/j.jngse.2015.01.028 10.1016/0378-3812(91)85038-V 10.1016/j.fuproc.2014.06.012 10.1007/BF02698286 10.1016/j.cherd.2013.01.015 10.1016/0950-4214(91)80029-5 10.1016/S0098-1354(99)80204-X 10.1016/j.jngse.2012.03.003 10.1002/cjce.20359 10.1016/0098-1354(95)87034-2 10.1016/0098-1354(96)00255-4 10.1016/0098-1354(89)85042-2 10.1016/0098-1354(90)87085-4 |
| ContentType | Journal Article |
| Copyright | 2019 Taylor & Francis 2019 2019 Taylor & Francis |
| Copyright_xml | – notice: 2019 Taylor & Francis 2019 – notice: 2019 Taylor & Francis |
| DBID | AAYXX CITATION 7QF 7QH 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7UA 8BQ 8FD C1K F1W F28 FR3 H8D H8G H97 JG9 JQ2 KR7 L.G L7M L~C L~D P64 |
| DOI | 10.1080/01496395.2019.1574825 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Aqualine Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Materials Business File Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Aqualine METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional ASFA: Aquatic Sciences and Fisheries Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Economics |
| EISSN | 1520-5754 |
| EndPage | 966 |
| ExternalDocumentID | 10_1080_01496395_2019_1574825 1574825 |
| Genre | Article |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 123 30N 4.4 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACPRK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P GCUZY GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NW0 O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TCY TDBHL TEN TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 WH7 ZGOLN ~02 ~S~ AAYXX CITATION 7QF 7QH 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7UA 8BQ 8FD C1K F1W F28 FR3 H8D H8G H97 JG9 JQ2 KR7 L.G L7M L~C L~D P64 |
| ID | FETCH-LOGICAL-c338t-d6426e7d597007ce767898c4e4741fe839cc1efeadf565463953ed3d2a72f4ea3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526702000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0149-6395 |
| IngestDate | Wed Aug 13 11:14:31 EDT 2025 Sat Nov 29 04:54:56 EST 2025 Tue Nov 18 22:21:16 EST 2025 Mon Oct 20 23:48:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-d6426e7d597007ce767898c4e4741fe839cc1efeadf565463953ed3d2a72f4ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7616-726X |
| PQID | 2352281645 |
| PQPubID | 2045228 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1080_01496395_2019_1574825 crossref_primary_10_1080_01496395_2019_1574825 proquest_journals_2352281645 informaworld_taylorfrancis_310_1080_01496395_2019_1574825 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-23 |
| PublicationDateYYYYMMDD | 2020-03-23 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Separation science and technology |
| PublicationYear | 2020 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0010 CIT0012 CIT0011 CIT0014 CIT0013 Chandra V. (CIT0001) 2006 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0022 Fouad W.A. (CIT0026) 2011; 109 Smil V. (CIT0002) 2015 Lee S.H. (CIT0030) 2011; 90 Russell T.F. (CIT0023) 1972 Russell T. (CIT0004) 1977; 75 CIT0003 CIT0025 CIT0024 CIT0005 CIT0027 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0021 – ident: CIT0013 doi: 10.1016/j.cherd.2009.11.003 – ident: CIT0007 doi: 10.1201/b14397 – ident: CIT0005 doi: 10.1016/B978-088415822-6/50008-8 – ident: CIT0025 doi: 10.1016/j.fluid.2013.07.029 – ident: CIT0020 doi: 10.1016/j.applthermaleng.2016.11.142 – ident: CIT0017 doi: 10.1016/j.jngse.2014.12.023 – ident: CIT0019 doi: 10.1016/j.enconman.2016.06.069 – ident: CIT0006 – ident: CIT0015 doi: 10.1016/j.cherd.2010.09.021 – ident: CIT0003 doi: 10.1016/j.jngse.2015.01.028 – ident: CIT0022 doi: 10.1016/0378-3812(91)85038-V – ident: CIT0027 doi: 10.1016/j.fuproc.2014.06.012 – ident: CIT0029 doi: 10.1007/BF02698286 – ident: CIT0016 doi: 10.1016/j.cherd.2013.01.015 – ident: CIT0010 doi: 10.1016/0950-4214(91)80029-5 – ident: CIT0008 – ident: CIT0028 doi: 10.1016/S0098-1354(99)80204-X – ident: CIT0018 doi: 10.1016/j.jngse.2012.03.003 – ident: CIT0014 doi: 10.1002/cjce.20359 – volume-title: Natural Gas: Fuel for the 21st Century year: 2015 ident: CIT0002 – ident: CIT0011 doi: 10.1016/0098-1354(95)87034-2 – volume: 75 start-page: 66 issue: 4 year: 1977 ident: CIT0004 publication-title: Oil & Gas Journal – ident: CIT0012 doi: 10.1016/0098-1354(96)00255-4 – volume-title: Fundamentals of Natural Gas: An International Perspective year: 2006 ident: CIT0001 – volume-title: Introduction to Chemical Engineering Analysis year: 1972 ident: CIT0023 – volume: 109 start-page: 112 issue: 18 year: 2011 ident: CIT0026 publication-title: Oil & Gas Journal – volume: 90 start-page: 101 issue: 6 year: 2011 ident: CIT0030 publication-title: Hydrocarbon Processing – ident: CIT0009 doi: 10.1016/0098-1354(89)85042-2 – ident: CIT0024 doi: 10.1016/0098-1354(90)87085-4 |
| SSID | ssj0008599 |
| Score | 2.2703807 |
| Snippet | This paper aims at modeling and optimizing a Middle East-based commercial natural gas liquid (NGL) recovery and fractionation plant, using a predictive process... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 955 |
| SubjectTerms | Algorithms Approximation Computer simulation Cryogenic cooling distillation Economics Feeds Fractionation Gas temperature gPROMS Heating Liquefied natural gas Liquefied petroleum gas Mixed integer Model accuracy Naphtha Natural gas Natural gas liquids Natural gas prices NGL recovery process Nonlinear programming Optimization Profitability Ratios Recovery Refrigeration Revenue simulation Simulators Steady state models Steam consumption |
| Title | Efficiency enhancement of a commercial natural gas liquid recovery plant: A MINLP optimization analysis |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01496395.2019.1574825 https://www.proquest.com/docview/2352281645 |
| Volume | 55 |
| WOSCitedRecordID | wos000526702000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1520-5754 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008599 issn: 0149-6395 databaseCode: TFW dateStart: 19780101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QQgIOPAaI8VIOXANtkq4tt2naBBJMHMbjVqV5wKTRwboh8e-xuxSBEOIAp56ctrFj-4vsz4QcpxHPA8sFi7RRTEqdMsAqKct5Kwl0Hsq8YmK6vYz7_eT-Pr321YSlL6tEDO3mRBGVr8bDrfKyrog7xaweAmuEhVnpSRjFEmAOeGHI7LGob9C7-_DFSVRNkEQJhiJ1D89Pq3yJTl-4S7_56ioA9db_4dM3yJrPPml7bi6bZMEWDbLcqYe-NcjqJ37CLfLQrQgmsDuT2uIRDQQvE-nYUUXhxU84rgnWq9hB4fmgSjoavsyGhiLQhlPyRp9HoLsz2qZXF_3LazoGF_Xkez-p8owo2-Sm1x10zpmfzMA0QNopM4BaWjY2gEYgx9A2hpCXJlpaCQmKs5B0aR1aB1bqIuyWgj8W1gjDVcydtErskMViXNhdQnMnE6lEKw91KDU3KVfghXRgQhM4EfImkbVGMu1py3F6xigLa3ZTv6cZ7mnm97RJTj7Enue8Hb8JpJ_VnU2rCxM3n26SiV9kD2rbyLwLKDOOqW0CaDTa-8PS-2SFI8IPBOPigCxOJzN7SJb063RYTo4qY38H3qr5bQ |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2xScCBHbHjA1dDYjtNwg0hKhCl4lCWm5V4KZVKC7Qg8ffMpAkqQogDnHIaJ7HHM_Msz3sAB2kk8sAJySNjM66USTlilZTnopYEJg9VXjAx3TbiZjO5v0_He2HoWiVhaD8iiihiNW1uOoyursQdUVmPmTWim1npYRjFCnHOJEyTOh0BsFb97jMaJ1GhIUkmnGyqLp6fhvmSn76wl36L1kUKqi_-x8cvwUJZgLKTkccsw4TrrcDsaaX7tgLzYxSFq9A-KzgmqEGTud4D-QidJ7K-ZxnDNz-SYhOOVxCE4rOdDVi38_zasYywNm6Ud_bUxeU7Zifs6qLZuGZ9jFKPZfsny0pSlDW4qZ-1Ts95Kc7ADaLaIbcIXGoutghIsMwwLsaslyZGOYU1indYdxkTOo-O6iNqmMI_ls5KK7JYeOUyuQ5TvX7PbQDLvUpUJmt5aEJlhE1FhoHIBDa0gZeh2ARVLYk2JXM5CWh0dVgRnJZzqmlOdTmnm3D4afY0ou74zSAdX289LM5M_EjgRMtfbHcq59BlFBhoQdVtgoA02vrD0Pswe966aujGRfNyG-YEAf5AciF3YGr48up2Yca8DTuDl73C8z8An4H9kA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB7RgEp74I1Kee2h16X27jq2uSEgAhGiHGjhtrL3ESKFJJCkUv89M84agaqKQ3vyadb2zuzMfKuZbwC-5YkoIyckT4wtuFIm54hVcl6KZhaZMlZlxcT0s512OtndXd4N1YSTUFZJGNrPiSIqX02He2x9XRH3nbJ6DKwJFWblR3GSKoQ5H2ARU-eEDPumdfvijLOkGiFJIpxk6iaevy3zJjy9IS_9w1lXEai1-h--fQ1WQvrJTub2sg4LbrgBy6f11LcN-PyKoHATeucVwwS1ZzI3vCcLodtENvKsYPjiB5rXhOtV9KD47BUTNug_zvqWEdLGY_KbjQeovGN2wq4vO-0uG6GPegjNn6wIlChb8KN1fnN6wcNoBm4Q0065RdjSdKlFOIJJhnEpxrw8M8opzFC8w6zLmNh5NFOfULsU_rF0VlpRpMIrV8htaAxHQ_cFWOlVpgrZLGMTKyNsLgp0QyaysY28jMUOqFoj2gTechqfMdBxTW8a9lTTnuqwpztw9CI2nhN3vCeQv1a3nlY3Jn4-3kTLd2T3atvQwQdMtKDcNkM4mnz9h6UP4WP3rKXbl52rXfgkCO1Hkgu5B43p08ztw5L5Ne1Png4qu38Gm5b8Qg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiency+enhancement+of+a+commercial+natural+gas+liquid+recovery+plant%3A+A+MINLP+optimization+analysis&rft.jtitle=Separation+science+and+technology&rft.au=Murali%2C+Ashwin&rft.au=Berrouk%2C+Abdallah+S.&rft.au=Dara%2C+Satyadileep&rft.au=AlWahedi%2C+Yasser+F.&rft.date=2020-03-23&rft.pub=Taylor+%26+Francis&rft.issn=0149-6395&rft.eissn=1520-5754&rft.volume=55&rft.issue=5&rft.spage=955&rft.epage=966&rft_id=info:doi/10.1080%2F01496395.2019.1574825&rft.externalDocID=1574825 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-6395&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-6395&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-6395&client=summon |