Optimization for the minimum fuel consumption problem of a hybrid electric vehicle using mixed-integer linear programming

In this study, a mixed-integer linear programming (MILP) formulation for obtaining the operating points of hybrid electric vehicle (HEV) powertrains is proposed. This study focuses on linearizing the nonlinear terms, such as an engine fuel consumption map, or bilinear terms represented by the energy...

Full description

Saved in:
Bibliographic Details
Published in:Engineering optimization Vol. 55; no. 9; pp. 1516 - 1534
Main Authors: Yamanaka, Gentaro, Kuroishi, Masakatsu, Matsumori, Tadayoshi
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 02.09.2023
Taylor & Francis Ltd
Subjects:
ISSN:0305-215X, 1029-0273
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, a mixed-integer linear programming (MILP) formulation for obtaining the operating points of hybrid electric vehicle (HEV) powertrains is proposed. This study focuses on linearizing the nonlinear terms, such as an engine fuel consumption map, or bilinear terms represented by the energy of the motor. To address this problem, a conventional piecewise linear (PWL) method and a multi-layer perceptron (MLP) regression approach are adopted. Although the optimal solution cannot be determined using a PWL approximation for the fuel consumption map, it can be obtained using an MLP regression. Furthermore, the PWL method achieves better results than the MLP approach in terms of the accuracy of its bilinear approximation. Obtaining the optimal solution using MILP helps in acquiring a Lagrange multiplication of the design variables by solving the dual problem, which allows an efficient design revision strategy to be obtained.
AbstractList In this study, a mixed-integer linear programming (MILP) formulation for obtaining the operating points of hybrid electric vehicle (HEV) powertrains is proposed. This study focuses on linearizing the nonlinear terms, such as an engine fuel consumption map, or bilinear terms represented by the energy of the motor. To address this problem, a conventional piecewise linear (PWL) method and a multi-layer perceptron (MLP) regression approach are adopted. Although the optimal solution cannot be determined using a PWL approximation for the fuel consumption map, it can be obtained using an MLP regression. Furthermore, the PWL method achieves better results than the MLP approach in terms of the accuracy of its bilinear approximation. Obtaining the optimal solution using MILP helps in acquiring a Lagrange multiplication of the design variables by solving the dual problem, which allows an efficient design revision strategy to be obtained.
In this study, a mixed-integer linear programming (MILP) formulation for obtaining the operating points of hybrid electric vehicle (HEV) powertrains is proposed. This study focuses on linearizing the nonlinear terms, such as an engine fuel consumption map, or bilinear terms represented by the energy of the motor. To address this problem, a conventional piecewise linear (PWL) method and a multi-layer perceptron (MLP) regression approach are adopted. Although the optimal solution cannot be determined using a PWL approximation for the fuel consumption map, it can be obtained using an MLP regression. Furthermore, the PWL method achieves better results than the MLP approach in terms of the accuracy of its bilinear approximation. Obtaining the optimal solution using MILP helps in acquiring a Lagrange multiplication of the design variables by solving the dual problem, which allows an efficient design revision strategy to be obtained.
Author Yamanaka, Gentaro
Kuroishi, Masakatsu
Matsumori, Tadayoshi
Author_xml – sequence: 1
  givenname: Gentaro
  orcidid: 0000-0002-5514-6467
  surname: Yamanaka
  fullname: Yamanaka, Gentaro
  email: e1384@mosk.tytlabs.co.jp
  organization: Toyota Central R&D Labs. Inc
– sequence: 2
  givenname: Masakatsu
  surname: Kuroishi
  fullname: Kuroishi, Masakatsu
  organization: Toyota Central R&D Labs. Inc
– sequence: 3
  givenname: Tadayoshi
  orcidid: 0000-0001-9597-0285
  surname: Matsumori
  fullname: Matsumori, Tadayoshi
  organization: Toyota Central R&D Labs. Inc
BookMark eNqFkDtrHDEUhUVwIGvHPyEgSD2OHjM7EmkSTB4Ggxsb3Amt5mpXRo-NpEm8-fXReO0mRdKc25zvXPhO0UlMERB6R8kFJYJ8IJwMjA73F4ww1kIKJtgrtKKEyY6wkZ-g1dLpltIbdFrKAyGUEyJW6HCzry6437q6FLFNGdcd4OCiC3PAdgaPTYplDvunwj6njYeAk8Ua7w6b7CYMHkzNzuCfsHPGA56Li9u28QhT52KFLWTsXQSdF36bdWj727fotdW-wPnzPUN3X7_cXn7vrm--XV1-vu4M56J20yBlL9fc8hEMFVaumRV86tfDOPbUCjJJGKwlpCdkYhJkv25hJ77p9aAn4Gfo_XG3_f4xQ6nqIc05tpeKiaGnbOxH2VrDsWVyKiWDVfvsgs4HRYlaLKsXy2qxrJ4tN-7jX5xx9Ulmzdr5_9KfjrSLTX3Qv1L2k6r64FO2WUfjiuL_nvgDm_GaPA
CitedBy_id crossref_primary_10_1016_j_est_2025_115936
crossref_primary_10_3390_en18010010
crossref_primary_10_3390_app15179302
crossref_primary_10_1007_s10910_025_01710_3
crossref_primary_10_1016_j_rineng_2025_106252
Cites_doi 10.1007/s00158-015-1254-8
10.2172/1184379
10.2172/1007833
10.3384/ecp12076173
10.1002/9781118627372
10.1016/j.energy.2019.116508
10.1115/1.3593409
10.1002/grl.50838
10.1115/1.2013289
10.1007/s00158-019-02264-0
10.1111/1540-5885.1720128
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/0305215X.2022.2098282
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-0273
EndPage 1534
ExternalDocumentID 10_1080_0305215X_2022_2098282
2098282
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29G
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-d5994963f37ec18f962f83d4657741f80d9e5ff00400d29e9469e9fd3b4a5ade3
IEDL.DBID TFW
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000840570600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-215X
IngestDate Wed Aug 13 11:18:45 EDT 2025
Sat Nov 29 06:22:51 EST 2025
Tue Nov 18 22:38:07 EST 2025
Mon Oct 20 23:45:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-d5994963f37ec18f962f83d4657741f80d9e5ff00400d29e9469e9fd3b4a5ade3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5514-6467
0000-0001-9597-0285
PQID 2854127479
PQPubID 53195
PageCount 19
ParticipantIDs informaworld_taylorfrancis_310_1080_0305215X_2022_2098282
crossref_citationtrail_10_1080_0305215X_2022_2098282
crossref_primary_10_1080_0305215X_2022_2098282
proquest_journals_2854127479
PublicationCentury 2000
PublicationDate 2023-09-02
PublicationDateYYYYMMDD 2023-09-02
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Engineering optimization
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Dekel Ofer (CIT0009) 2012; 13
CIT0010
CIT0021
CIT0020
CIT0001
Guéret Christelle (CIT0011) 2000
CIT0012
CIT0003
CIT0014
CIT0002
CIT0013
CIT0005
CIT0016
CIT0004
CIT0015
CIT0007
CIT0018
CIT0006
CIT0017
CIT0008
CIT0019
References_xml – ident: CIT0016
– ident: CIT0015
  doi: 10.1007/s00158-015-1254-8
– ident: CIT0018
– ident: CIT0020
  doi: 10.2172/1184379
– ident: CIT0012
– ident: CIT0013
– ident: CIT0004
  doi: 10.2172/1007833
– ident: CIT0003
  doi: 10.3384/ecp12076173
– ident: CIT0008
– ident: CIT0010
– volume-title: Applications of Optimization with Xpress-MP
  year: 2000
  ident: CIT0011
– ident: CIT0021
  doi: 10.1002/9781118627372
– ident: CIT0002
– ident: CIT0007
  doi: 10.1016/j.energy.2019.116508
– ident: CIT0006
  doi: 10.1115/1.3593409
– ident: CIT0014
  doi: 10.1002/grl.50838
– ident: CIT0019
– ident: CIT0005
  doi: 10.1115/1.2013289
– ident: CIT0001
  doi: 10.1007/s00158-019-02264-0
– volume: 13
  start-page: 165
  year: 2012
  ident: CIT0009
  publication-title: Journal of Machine Learning Research
– ident: CIT0017
  doi: 10.1111/1540-5885.1720128
SSID ssj0013008
Score 2.3812099
Snippet In this study, a mixed-integer linear programming (MILP) formulation for obtaining the operating points of hybrid electric vehicle (HEV) powertrains is...
In this study, a mixed-integer linear programming (MILP) formulation for obtaining the operating points of hybrid electric vehicle (HEV) powertrains is...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1516
SubjectTerms Approximation
Fuel consumption
HEV
hybrid electric vehicle powertrains
Hybrid electric vehicles
Integer programming
Linear programming
Mathematical analysis
Mixed integer
mixed-integer linear programming
Multilayer perceptrons
Multilayers
operating point optimization
Optimization
Powertrain
Title Optimization for the minimum fuel consumption problem of a hybrid electric vehicle using mixed-integer linear programming
URI https://www.tandfonline.com/doi/abs/10.1080/0305215X.2022.2098282
https://www.proquest.com/docview/2854127479
Volume 55
WOSCitedRecordID wos000840570600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1029-0273
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013008
  issn: 0305-215X
  databaseCode: TFW
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QxAEOvBGDgXLgWlibtDRHhJg4IOAwxG5Vl8QwaQ_UdhP8e-w05SGEOMAPsGsljvM5tT8zdpybMLFCQBAZC4HMhQzSPEEgp7tCITxNJbhG4euzm5t0MFB3vpqw9GWVlENDTRThYjUd7nxYNhVxp-SjeFMNMLuLqJdKYdZAURiRPRX19XsPH_8Rum4mHUkEJNL08Pyk5cvt9IW79FusdhdQb_0fTN9gax598vPaXTbZkp1usdVPnITb7PUWg8jEd2dytIwjROTEQDKZTzjM7Zhr17bpYg33A2n4DHjOn16p_4vXo3VGmi_sE32HU3H9I-p4sSZw_BS24GR8XnBfH4b6H3fYfe-yf3EV-PkMgcbEtgpMrJTEAwzizOowBZVEkAojkxgxZQhp1ygbA7g4YSJlFabiVoERQ5nHubFil7Wms6ndYzwxSsaIJZSmF06QQwhDQHQEsTUak7w2k82-ZNqTl9MMjXEWNhynfmUzWtnMr2ybnbyLPdfsHb8JqM-bnlXu2QTqGSeZ-EW203hI5gNBmVGDakiZv9r_g-oDtkJj7l1tW9RhraqY20O2rBfVqCyOnMu_AWVu_cU
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QIAEH3ojxzIFrYW3SrjkixARijMsQu0UliWESG2hsCP49dprCEEIc4AfYjfJw_KX-PjN2UNg4c0JAlFgHkSyEjPIiw0TO1IXC9DSX4InCrUa7nXe7apILQ2WVhKGhFIrwsZoONz1GVyVxR7RJ8arqIrxLiEylEDZgGJ6h7nQEwDrNm88_CXXflY5MIrKpWDw_uflyP31RL_0Wrf0V1Fz6j8Evs8WQgPLjcsessCk3WGULE7KEa-ztCuNIPxA0OQ6NY5bISYSkP-5zGLsHbjxz04cbHnrS8EfgBb9_IwoYL7vr9Ax_cff0HU719Xfo49XZyEtUuCGn0RdDHkrE0P_dOrtunnZOzqLQoiEyiG1HkU2VkniGQTSciXNQWQK5sDJLMa2MIa9b5VIAHypsopxCNO4UWHEri7SwTmyw6cHjwG0ynlklU0wnlKFHTpC3EMeACRKkzhrEeTUmq4XRJuiXUxuNBx1XMqdhZjXNrA4zW2OHH2ZPpYDHbwZqctX1yL-cQNnmRItfbHeqLaJDLHjWxFGNCfyrrT-43mdzZ53Llm6dty-22Tx1vfelbskOmx4Nx26XzZqXUe95uOf3_ztixgH3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QIAQH3og3OXAtrE1amiMCJhBocBhit6hL4oHEBtoDwb_HTlMYQogD_AC7VuI4n1P7M2P7hY0zJwREiXUQyULIKC8yBHKmJhTC01yCbxS-Omo08lZL3YRqwkEoq6QcGkqiCB-r6XA_W6gq4g7JR_GmamF2l1AvlcKsAaPwFELnlBy7Wb_7_JFQ80PpSCQimaqJ5yc1X66nL-Sl34K1v4HqC_9g-yKbD_CTH5f-ssQmXG-ZzY2REq6wt2uMIt3QnsnRMo4YkRMFSXfU5TByj9z4vk0fbHiYSMOfgBf8_o0awHg5W-fB8Bd3T9_hVF3fQR2vzkaeoML1ORlf9HkoEEP9nVV2Wz9rnpxHYUBDZDCzHUY2VUriCQZx5Eycg8oSyIWVWYqgMoa8ZpVLAXygsIlyCnNxp8CKtizSwjqxxiZ7Tz23znhmlUwRTChDT5wg2xDHgPAIUmcNZnkbTFb7ok1gL6chGo86rkhOw8pqWlkdVnaDHXyIPZf0Hb8JqPFN10P_bgLlkBMtfpHdrjxEh0gw0NShGlPqrzb_oHqPzdyc1vXVReNyi83SyHtf55Zss8lhf-R22LR5GT4M-rve-98BU_sAqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+for+the+minimum+fuel+consumption+problem+of+a+hybrid+electric+vehicle+using+mixed-integer+linear+programming&rft.jtitle=Engineering+optimization&rft.au=Yamanaka%2C+Gentaro&rft.au=Kuroishi%2C+Masakatsu&rft.au=Matsumori%2C+Tadayoshi&rft.date=2023-09-02&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=55&rft.issue=9&rft.spage=1516&rft.epage=1534&rft_id=info:doi/10.1080%2F0305215X.2022.2098282&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0305215X_2022_2098282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon