Fast and Robust Low-Rank Learning over Networks: A Decentralized Matrix Quantile Regression Approach
Decentralized low-rank learning is an active research domain with extensive practical applications. A common approach to producing low-rank and robust estimations is to employ a combination of the nonsmooth quantile regression loss and nuclear-norm regularizer. Nevertheless, directly applying existi...
Gespeichert in:
| Veröffentlicht in: | Journal of computational and graphical statistics Jg. 33; H. 4; S. 1214 - 1223 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Alexandria
Taylor & Francis
01.10.2024
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 1061-8600, 1537-2715 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!