Exploiting aggregate sparsity in second-order cone relaxations for quadratic constrained quadratic programming problems
Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for nonconvex quadratic constrained quadratic programming problems (QCQPs), exploiting the aggregate sparsity of the data matrices in the SDP by Fukuda et al. [Exploiting sparsity in semidefin...
Uloženo v:
| Vydáno v: | Optimization methods & software Ročník 37; číslo 2; s. 753 - 771 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
04.03.2022
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 1055-6788, 1029-4937 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!