Exploiting aggregate sparsity in second-order cone relaxations for quadratic constrained quadratic programming problems
Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for nonconvex quadratic constrained quadratic programming problems (QCQPs), exploiting the aggregate sparsity of the data matrices in the SDP by Fukuda et al. [Exploiting sparsity in semidefin...
Gespeichert in:
| Veröffentlicht in: | Optimization methods & software Jg. 37; H. 2; S. 753 - 771 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Abingdon
Taylor & Francis
04.03.2022
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 1055-6788, 1029-4937 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for nonconvex quadratic constrained quadratic programming problems (QCQPs), exploiting the aggregate sparsity of the data matrices in the SDP by Fukuda et al. [Exploiting sparsity in semidefinite programming via matrix completion I: General framework, SIAM J. Optim. 11(3) (2001), pp. 647-674] and second-order cone programming (SOCP) relaxation have been popular. In this paper, we exploit the aggregate sparsity of SOCP relaxation of nonconvex QCQPs. Specifically, we prove that exploiting the aggregate sparsity reduces the number of second-order cones in the SOCP relaxation, and that we can simplify the matrix completion procedure by Fukuda et al. in both primal and dual of the SOCP relaxation problem without losing the max-determinant property. For numerical experiments, nonconvex QCQPs from the lattice graph and pooling problem are tested as their SOCP relaxations provide the same optimal value as the SDP relaxations. We demonstrate that exploiting the aggregate sparsity improves the computational efficiency of the SOCP relaxation for the same objective value as the SDP relaxation, thus much larger problems can be handled by the proposed SOCP relaxation than the SDP relaxation. |
|---|---|
| AbstractList | Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for nonconvex quadratic constrained quadratic programming problems (QCQPs), exploiting the aggregate sparsity of the data matrices in the SDP by Fukuda et al. [Exploiting sparsity in semidefinite programming via matrix completion I: General framework, SIAM J. Optim. 11(3) (2001), pp. 647–674] and second-order cone programming (SOCP) relaxation have been popular. In this paper, we exploit the aggregate sparsity of SOCP relaxation of nonconvex QCQPs. Specifically, we prove that exploiting the aggregate sparsity reduces the number of second-order cones in the SOCP relaxation, and that we can simplify the matrix completion procedure by Fukuda et al. in both primal and dual of the SOCP relaxation problem without losing the max-determinant property. For numerical experiments, nonconvex QCQPs from the lattice graph and pooling problem are tested as their SOCP relaxations provide the same optimal value as the SDP relaxations. We demonstrate that exploiting the aggregate sparsity improves the computational efficiency of the SOCP relaxation for the same objective value as the SDP relaxation, thus much larger problems can be handled by the proposed SOCP relaxation than the SDP relaxation. Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for nonconvex quadratic constrained quadratic programming problems (QCQPs), exploiting the aggregate sparsity of the data matrices in the SDP by Fukuda et al. [Exploiting sparsity in semidefinite programming via matrix completion I: General framework, SIAM J. Optim. 11(3) (2001), pp. 647-674] and second-order cone programming (SOCP) relaxation have been popular. In this paper, we exploit the aggregate sparsity of SOCP relaxation of nonconvex QCQPs. Specifically, we prove that exploiting the aggregate sparsity reduces the number of second-order cones in the SOCP relaxation, and that we can simplify the matrix completion procedure by Fukuda et al. in both primal and dual of the SOCP relaxation problem without losing the max-determinant property. For numerical experiments, nonconvex QCQPs from the lattice graph and pooling problem are tested as their SOCP relaxations provide the same optimal value as the SDP relaxations. We demonstrate that exploiting the aggregate sparsity improves the computational efficiency of the SOCP relaxation for the same objective value as the SDP relaxation, thus much larger problems can be handled by the proposed SOCP relaxation than the SDP relaxation. |
| Author | Yamashita, Makoto Sheen, Heejune |
| Author_xml | – sequence: 1 givenname: Heejune surname: Sheen fullname: Sheen, Heejune organization: School of Industrial and Systems Engineering, Georgia Institute of Technology – sequence: 2 givenname: Makoto orcidid: 0000-0002-8409-036X surname: Yamashita fullname: Yamashita, Makoto email: Makoto.Yamashita@c.titech.ac.jp organization: Department of Mathematical and Computing Science, Tokyo Institute of Technology |
| BookMark | eNqFUE1r3DAUFCGBJJv8hIAhZyeSLFtecmlZNmkh0EtzFm_1YRRsafOkJdl_X7m7gdJDe9Jo3swb3lyS0xCDJeSG0TtGe3rPaNt2su_vOOWF6rnkbXdCLhjly1osG3k647atZ9E5uUzplVIqmOguyPv6YztGn30YKhgGtANkW6UtYPJ5X_lQJatjMHVEY7Eq0FZoR_iA7GNIlYtYve3AYPnreZwygg_W_MFuMQ4I0zRnFLwZ7ZSuyJmDMdnr47sgL4_rn6tv9fOPp--rr8-1bpo-10YYbjRsGgtLzQwIyjkIaSmXwJvO9VKLjXOup9RK1m1ayZe8M9A2ThTSNgtye9hbgt92NmX1GncYSqTikvWM0k50RfVwUGmMKaF1Svv8-8L5mlExquam1WfTam5aHZsu7vYv9xb9BLj_r-_LwedDqXGC94ijURn2Y0SHELRPqvn3il_0npqL |
| CitedBy_id | crossref_primary_10_1155_2021_5578427 crossref_primary_10_1007_s10898_022_01268_3 crossref_primary_10_1007_s10898_021_01071_6 crossref_primary_10_1038_s42003_021_01768_0 |
| Cites_doi | 10.1007/s13675-018-0101-2 10.1137/1.9781611970791 10.1007/s10898-019-00795-w 10.1137/0801013 10.1093/oso/9780198534778.001.0001 10.1007/BF02592093 10.1080/10556780108805819 10.1017/CBO9780511804441 10.4153/CJM-1965-053-6 10.1007/s10589-006-6512-7 10.1023/A:1025794313696 10.1561/9781680830392 10.1007/s11590-018-1229-y 10.1137/S1052623400366218 10.1007/s10107-010-0402-6 10.1145/1149283.1149286 10.1007/s10107-002-0339-5 10.1109/TSP.2010.2087327 10.1109/ACC.2014.6859255 10.1007/s10107-003-0437-z 10.15807/jorsj.62.133 10.1007/s10107-011-0462-2 10.1007/s10479-005-3969-1 10.15807/jorsj.51.241 10.1007/s10107-002-0351-9 10.1080/10556788.2015.1014554 10.1016/0024-3795(84)90207-6 10.1145/227683.227684 10.1080/10556789908805766 10.1016/j.dam.2019.04.032 10.1109/CISS.2014.6814141 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2020 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 0YH AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1080/10556788.2020.1827256 |
| DatabaseName | Taylor & Francis Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-4937 |
| EndPage | 771 |
| ExternalDocumentID | 10_1080_10556788_2020_1827256 1827256 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: JSPS KAKENHI grantid: 18K11176 |
| GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 0YH 123 29N 30N 4.4 AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c338t-d4d2dcab3ea9c1da4022a47e027a236f87c4bfff800e716b572926da53f4f80e3 |
| IEDL.DBID | 0YH |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573656300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1055-6788 |
| IngestDate | Wed Aug 13 07:46:21 EDT 2025 Tue Nov 18 21:39:32 EST 2025 Sat Nov 29 08:16:20 EST 2025 Mon Oct 20 23:48:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-d4d2dcab3ea9c1da4022a47e027a236f87c4bfff800e716b572926da53f4f80e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8409-036X |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/10556788.2020.1827256 |
| PQID | 2718100646 |
| PQPubID | 186278 |
| PageCount | 19 |
| ParticipantIDs | crossref_citationtrail_10_1080_10556788_2020_1827256 crossref_primary_10_1080_10556788_2020_1827256 proquest_journals_2718100646 informaworld_taylorfrancis_310_1080_10556788_2020_1827256 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-04 |
| PublicationDateYYYYMMDD | 2022-03-04 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Optimization methods & software |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_3_30_1 Grötschel M. (e_1_3_3_18_1) 2012 e_1_3_3_17_1 e_1_3_3_39_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_4_1 e_1_3_3_22_1 |
| References_xml | – ident: e_1_3_3_33_1 – ident: e_1_3_3_25_1 doi: 10.1007/s13675-018-0101-2 – ident: e_1_3_3_32_1 doi: 10.1137/1.9781611970791 – ident: e_1_3_3_23_1 doi: 10.1007/s10898-019-00795-w – ident: e_1_3_3_26_1 doi: 10.1137/0801013 – ident: e_1_3_3_28_1 – ident: e_1_3_3_13_1 doi: 10.1093/oso/9780198534778.001.0001 – ident: e_1_3_3_31_1 doi: 10.1007/BF02592093 – ident: e_1_3_3_20_1 doi: 10.1080/10556780108805819 – ident: e_1_3_3_10_1 doi: 10.1017/CBO9780511804441 – ident: e_1_3_3_29_1 doi: 10.4153/CJM-1965-053-6 – ident: e_1_3_3_19_1 doi: 10.1007/s10589-006-6512-7 – ident: e_1_3_3_21_1 doi: 10.1023/A:1025794313696 – ident: e_1_3_3_37_1 doi: 10.1561/9781680830392 – ident: e_1_3_3_39_1 doi: 10.1007/s11590-018-1229-y – ident: e_1_3_3_15_1 doi: 10.1137/S1052623400366218 – ident: e_1_3_3_22_1 doi: 10.1007/s10107-010-0402-6 – ident: e_1_3_3_9_1 doi: 10.1145/1149283.1149286 – ident: e_1_3_3_5_1 doi: 10.1007/s10107-002-0339-5 – ident: e_1_3_3_12_1 doi: 10.1109/TSP.2010.2087327 – volume-title: Geometric Algorithms and Combinatorial Optimization year: 2012 ident: e_1_3_3_18_1 – ident: e_1_3_3_27_1 doi: 10.1109/ACC.2014.6859255 – ident: e_1_3_3_6_1 doi: 10.1007/s10107-003-0437-z – ident: e_1_3_3_35_1 doi: 10.15807/jorsj.62.133 – ident: e_1_3_3_8_1 doi: 10.1007/s10107-011-0462-2 – ident: e_1_3_3_7_1 doi: 10.1007/s10479-005-3969-1 – ident: e_1_3_3_24_1 doi: 10.15807/jorsj.51.241 – ident: e_1_3_3_30_1 doi: 10.1007/s10107-002-0351-9 – ident: e_1_3_3_38_1 doi: 10.1080/10556788.2015.1014554 – ident: e_1_3_3_3_1 – ident: e_1_3_3_4_1 – ident: e_1_3_3_17_1 doi: 10.1016/0024-3795(84)90207-6 – ident: e_1_3_3_16_1 doi: 10.1145/227683.227684 – ident: e_1_3_3_36_1 doi: 10.1080/10556789908805766 – ident: e_1_3_3_14_1 – ident: e_1_3_3_34_1 doi: 10.1016/j.dam.2019.04.032 – ident: e_1_3_3_2_1 doi: 10.1109/CISS.2014.6814141 – ident: e_1_3_3_11_1 |
| SSID | ssj0004146 |
| Score | 2.3046808 |
| Snippet | Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for nonconvex quadratic constrained quadratic... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 753 |
| SubjectTerms | aggregate sparsity chordal sparsity Computational efficiency Computing time Mathematical analysis Matrices (mathematics) Quadratic constrained quadratic programming Quadratic programming second-order cone programming Semidefinite programming Sparsity |
| Title | Exploiting aggregate sparsity in second-order cone relaxations for quadratic constrained quadratic programming problems |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10556788.2020.1827256 https://www.proquest.com/docview/2718100646 |
| Volume | 37 |
| WOSCitedRecordID | wos000573656300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1029-4937 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004146 issn: 1055-6788 databaseCode: TFW dateStart: 19920101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagMMDAG1EoyAOroXUcJxkRouqAKoYCZbIcP1AlqKBJgZ_P2XGgFUIdYIkiR-c49sV3n_XdHUKnVoHfAGaWcNWWhMURI7lKDGGU5h0tlY19SqG766TfT4fD7CawCYtAq3QY2laJIvxe7X5umRc1I-7c13QE6AbojkJTShOw28tohQI0cfir_dD7Do0MAUYgQpxMHcTzWzdz5mkueemPzdpboO7mP4x9C20E9xNfVPqyjZbMeAetzyQl3EXvnpY3cnRoLB8BjruDNgwbj6dv4NEYFw5Ea-KzdmK4NdhFxHxUZ38YvgW_TqV2qqXc48KXoTB6pjWwwp7dO0JJm2IP3XavBpc9EsozEAW4tiSaaaqVzCMjMwXrCkiUSpYYALqSRtymiWK5tRZcUgOoLI_Bj6dcyziyDBpNtI8aYxjjAcISTDXLwXMxPGM65qltcwq9R4m2PJadJmL1qggVcpe7sT-JTkhxWs-rcPMqwrw20dmX2EuVvGORQDa75KL0pya2KnEiogWyrVo_RNgHCgEqmXac28cP_9D1EVqjLurCUd9YCzXKydQco1X1Vo6KyYlXeLgOuvefYXr_VA |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAEH3ojBgBy4BliatusRISYQY6fxuEVpHmgSTEDH4-djpyl0QogD3KZMTtPEjf1Z9mdC9p0GvwHMLEv0kWIijgTLdWqZ4DxvG6Vd7CmFrntpv9-5vc3qtTCYVokY2pVEEf6uxo8bg9FVStyhb-oI2A3gHYehDk_BcE-TmRhsLfLnD7o3X7WRocIIRBjKVFU8P00zYZ8m2Eu_3dbeBHWX_mPxy2QxOKD0uNSYFTJlR6tkoUZLuEbefGLeEBOiqboDQI6hNgpXj0_goMMRLRBGG-Z5Oyn8tBRrYt7L6B-Fl6FPL8qgcmn8u_CNKKypjYa8sAd8RmhqU6yTq-7p4OSMhQYNTAOyHTMjDDda5ZFVmYaTBSzKlUgtQF3Fo8R1Ui1y5xw4pRZwWR6DJ88To-LICRi00QZpjGCNm4QqMNYiB9_FJpkwcdJxRwmH2aPUuCRW7SYR1bFIHdjLce33sh1ITqt9lbivMuxrkxx8ij2W9B2_CWT1M5djHzdxZZMTGf0i26oURIaboJAcjH8bHb9k6w9T75G5s8FlT_bO-xfbZJ5jDQYmwokWaYyfX-wOmdWv42HxvOu1_wP-jAJ7 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwIxEG4UjdGDbyOK2oPXKnS7XTgalWgkhAMqt6bbhyFRgiyoP99pt6sQYzjojZRMt9vOzszXzHyD0KlVEDeAmyVcVSVhccRIqhJDGKVpTUtlY08p9NBK2u16r9fohGzCLKRVOgxtc6IIb6vdxz3UtsiIO_c9HQG6AbqjMFSnCfjtRbQEoTN3St5tPn6XRoYCIxAhTqYo4vltmhn3NENe-sNYew_U3PiHtW-i9RB-4otcX7bQghlso7UpUsId9O7T8vouHRrLJ4Dj7qINg-Hx6Ru4P8CZA9GaeNZODD8NdhUxH_ndH4Z3wa8TqZ1qKfd35ttQGD01GrLCXtwzQkubbBfdN6-7lzcktGcgCnDtmGimqVYyjYxsKDhXQKJUssQA0JU04raeKJZaayEkNYDK0hjieMq1jCPLYNBEe6g0gDXuIyzBVbMUIhfDG0zHvG6rnMLsUaItj2WtjFhxKkIF7nK39mdRCxSnxb4Kt68i7GsZnX2JDXPyjnkCjekjF2N_a2LzFicimiNbKfRDBDuQCQquv-bCPn7wh6lP0Ernqilat-27Q7RKXQGGy4JjFVQajybmCC2rt3E_Gx173f8E8XkBLQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+aggregate+sparsity+in+second-order+cone+relaxations+for+quadratic+constrained+quadratic+programming+problems&rft.jtitle=Optimization+methods+%26+software&rft.au=Sheen%2C+Heejune&rft.au=Yamashita%2C+Makoto&rft.date=2022-03-04&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=37&rft.issue=2&rft.spage=753&rft.epage=771&rft_id=info:doi/10.1080%2F10556788.2020.1827256&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10556788_2020_1827256 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon |