Exploiting aggregate sparsity in second-order cone relaxations for quadratic constrained quadratic programming problems

Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for nonconvex quadratic constrained quadratic programming problems (QCQPs), exploiting the aggregate sparsity of the data matrices in the SDP by Fukuda et al. [Exploiting sparsity in semidefin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization methods & software Jg. 37; H. 2; S. 753 - 771
Hauptverfasser: Sheen, Heejune, Yamashita, Makoto
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 04.03.2022
Taylor & Francis Ltd
Schlagworte:
ISSN:1055-6788, 1029-4937
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for nonconvex quadratic constrained quadratic programming problems (QCQPs), exploiting the aggregate sparsity of the data matrices in the SDP by Fukuda et al. [Exploiting sparsity in semidefinite programming via matrix completion I: General framework, SIAM J. Optim. 11(3) (2001), pp. 647-674] and second-order cone programming (SOCP) relaxation have been popular. In this paper, we exploit the aggregate sparsity of SOCP relaxation of nonconvex QCQPs. Specifically, we prove that exploiting the aggregate sparsity reduces the number of second-order cones in the SOCP relaxation, and that we can simplify the matrix completion procedure by Fukuda et al. in both primal and dual of the SOCP relaxation problem without losing the max-determinant property. For numerical experiments, nonconvex QCQPs from the lattice graph and pooling problem are tested as their SOCP relaxations provide the same optimal value as the SDP relaxations. We demonstrate that exploiting the aggregate sparsity improves the computational efficiency of the SOCP relaxation for the same objective value as the SDP relaxation, thus much larger problems can be handled by the proposed SOCP relaxation than the SDP relaxation.
AbstractList Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for nonconvex quadratic constrained quadratic programming problems (QCQPs), exploiting the aggregate sparsity of the data matrices in the SDP by Fukuda et al. [Exploiting sparsity in semidefinite programming via matrix completion I: General framework, SIAM J. Optim. 11(3) (2001), pp. 647–674] and second-order cone programming (SOCP) relaxation have been popular. In this paper, we exploit the aggregate sparsity of SOCP relaxation of nonconvex QCQPs. Specifically, we prove that exploiting the aggregate sparsity reduces the number of second-order cones in the SOCP relaxation, and that we can simplify the matrix completion procedure by Fukuda et al. in both primal and dual of the SOCP relaxation problem without losing the max-determinant property. For numerical experiments, nonconvex QCQPs from the lattice graph and pooling problem are tested as their SOCP relaxations provide the same optimal value as the SDP relaxations. We demonstrate that exploiting the aggregate sparsity improves the computational efficiency of the SOCP relaxation for the same objective value as the SDP relaxation, thus much larger problems can be handled by the proposed SOCP relaxation than the SDP relaxation.
Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for nonconvex quadratic constrained quadratic programming problems (QCQPs), exploiting the aggregate sparsity of the data matrices in the SDP by Fukuda et al. [Exploiting sparsity in semidefinite programming via matrix completion I: General framework, SIAM J. Optim. 11(3) (2001), pp. 647-674] and second-order cone programming (SOCP) relaxation have been popular. In this paper, we exploit the aggregate sparsity of SOCP relaxation of nonconvex QCQPs. Specifically, we prove that exploiting the aggregate sparsity reduces the number of second-order cones in the SOCP relaxation, and that we can simplify the matrix completion procedure by Fukuda et al. in both primal and dual of the SOCP relaxation problem without losing the max-determinant property. For numerical experiments, nonconvex QCQPs from the lattice graph and pooling problem are tested as their SOCP relaxations provide the same optimal value as the SDP relaxations. We demonstrate that exploiting the aggregate sparsity improves the computational efficiency of the SOCP relaxation for the same objective value as the SDP relaxation, thus much larger problems can be handled by the proposed SOCP relaxation than the SDP relaxation.
Author Yamashita, Makoto
Sheen, Heejune
Author_xml – sequence: 1
  givenname: Heejune
  surname: Sheen
  fullname: Sheen, Heejune
  organization: School of Industrial and Systems Engineering, Georgia Institute of Technology
– sequence: 2
  givenname: Makoto
  orcidid: 0000-0002-8409-036X
  surname: Yamashita
  fullname: Yamashita, Makoto
  email: Makoto.Yamashita@c.titech.ac.jp
  organization: Department of Mathematical and Computing Science, Tokyo Institute of Technology
BookMark eNqFUE1r3DAUFCGBJJv8hIAhZyeSLFtecmlZNmkh0EtzFm_1YRRsafOkJdl_X7m7gdJDe9Jo3swb3lyS0xCDJeSG0TtGe3rPaNt2su_vOOWF6rnkbXdCLhjly1osG3k647atZ9E5uUzplVIqmOguyPv6YztGn30YKhgGtANkW6UtYPJ5X_lQJatjMHVEY7Eq0FZoR_iA7GNIlYtYve3AYPnreZwygg_W_MFuMQ4I0zRnFLwZ7ZSuyJmDMdnr47sgL4_rn6tv9fOPp--rr8-1bpo-10YYbjRsGgtLzQwIyjkIaSmXwJvO9VKLjXOup9RK1m1ayZe8M9A2ThTSNgtye9hbgt92NmX1GncYSqTikvWM0k50RfVwUGmMKaF1Svv8-8L5mlExquam1WfTam5aHZsu7vYv9xb9BLj_r-_LwedDqXGC94ijURn2Y0SHELRPqvn3il_0npqL
CitedBy_id crossref_primary_10_1155_2021_5578427
crossref_primary_10_1007_s10898_022_01268_3
crossref_primary_10_1007_s10898_021_01071_6
crossref_primary_10_1038_s42003_021_01768_0
Cites_doi 10.1007/s13675-018-0101-2
10.1137/1.9781611970791
10.1007/s10898-019-00795-w
10.1137/0801013
10.1093/oso/9780198534778.001.0001
10.1007/BF02592093
10.1080/10556780108805819
10.1017/CBO9780511804441
10.4153/CJM-1965-053-6
10.1007/s10589-006-6512-7
10.1023/A:1025794313696
10.1561/9781680830392
10.1007/s11590-018-1229-y
10.1137/S1052623400366218
10.1007/s10107-010-0402-6
10.1145/1149283.1149286
10.1007/s10107-002-0339-5
10.1109/TSP.2010.2087327
10.1109/ACC.2014.6859255
10.1007/s10107-003-0437-z
10.15807/jorsj.62.133
10.1007/s10107-011-0462-2
10.1007/s10479-005-3969-1
10.15807/jorsj.51.241
10.1007/s10107-002-0351-9
10.1080/10556788.2015.1014554
10.1016/0024-3795(84)90207-6
10.1145/227683.227684
10.1080/10556789908805766
10.1016/j.dam.2019.04.032
10.1109/CISS.2014.6814141
ContentType Journal Article
Copyright 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2020
2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/10556788.2020.1827256
DatabaseName Taylor & Francis Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4937
EndPage 771
ExternalDocumentID 10_1080_10556788_2020_1827256
1827256
Genre Research Article
GrantInformation_xml – fundername: JSPS KAKENHI
  grantid: 18K11176
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
0YH
123
29N
30N
4.4
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-d4d2dcab3ea9c1da4022a47e027a236f87c4bfff800e716b572926da53f4f80e3
IEDL.DBID 0YH
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573656300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1055-6788
IngestDate Wed Aug 13 07:46:21 EDT 2025
Tue Nov 18 21:39:32 EST 2025
Sat Nov 29 08:16:20 EST 2025
Mon Oct 20 23:48:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-d4d2dcab3ea9c1da4022a47e027a236f87c4bfff800e716b572926da53f4f80e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8409-036X
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/10556788.2020.1827256
PQID 2718100646
PQPubID 186278
PageCount 19
ParticipantIDs crossref_citationtrail_10_1080_10556788_2020_1827256
crossref_primary_10_1080_10556788_2020_1827256
proquest_journals_2718100646
informaworld_taylorfrancis_310_1080_10556788_2020_1827256
PublicationCentury 2000
PublicationDate 2022-03-04
PublicationDateYYYYMMDD 2022-03-04
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-04
  day: 04
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Optimization methods & software
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_30_1
Grötschel M. (e_1_3_3_18_1) 2012
e_1_3_3_17_1
e_1_3_3_39_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_33_1
– ident: e_1_3_3_25_1
  doi: 10.1007/s13675-018-0101-2
– ident: e_1_3_3_32_1
  doi: 10.1137/1.9781611970791
– ident: e_1_3_3_23_1
  doi: 10.1007/s10898-019-00795-w
– ident: e_1_3_3_26_1
  doi: 10.1137/0801013
– ident: e_1_3_3_28_1
– ident: e_1_3_3_13_1
  doi: 10.1093/oso/9780198534778.001.0001
– ident: e_1_3_3_31_1
  doi: 10.1007/BF02592093
– ident: e_1_3_3_20_1
  doi: 10.1080/10556780108805819
– ident: e_1_3_3_10_1
  doi: 10.1017/CBO9780511804441
– ident: e_1_3_3_29_1
  doi: 10.4153/CJM-1965-053-6
– ident: e_1_3_3_19_1
  doi: 10.1007/s10589-006-6512-7
– ident: e_1_3_3_21_1
  doi: 10.1023/A:1025794313696
– ident: e_1_3_3_37_1
  doi: 10.1561/9781680830392
– ident: e_1_3_3_39_1
  doi: 10.1007/s11590-018-1229-y
– ident: e_1_3_3_15_1
  doi: 10.1137/S1052623400366218
– ident: e_1_3_3_22_1
  doi: 10.1007/s10107-010-0402-6
– ident: e_1_3_3_9_1
  doi: 10.1145/1149283.1149286
– ident: e_1_3_3_5_1
  doi: 10.1007/s10107-002-0339-5
– ident: e_1_3_3_12_1
  doi: 10.1109/TSP.2010.2087327
– volume-title: Geometric Algorithms and Combinatorial Optimization
  year: 2012
  ident: e_1_3_3_18_1
– ident: e_1_3_3_27_1
  doi: 10.1109/ACC.2014.6859255
– ident: e_1_3_3_6_1
  doi: 10.1007/s10107-003-0437-z
– ident: e_1_3_3_35_1
  doi: 10.15807/jorsj.62.133
– ident: e_1_3_3_8_1
  doi: 10.1007/s10107-011-0462-2
– ident: e_1_3_3_7_1
  doi: 10.1007/s10479-005-3969-1
– ident: e_1_3_3_24_1
  doi: 10.15807/jorsj.51.241
– ident: e_1_3_3_30_1
  doi: 10.1007/s10107-002-0351-9
– ident: e_1_3_3_38_1
  doi: 10.1080/10556788.2015.1014554
– ident: e_1_3_3_3_1
– ident: e_1_3_3_4_1
– ident: e_1_3_3_17_1
  doi: 10.1016/0024-3795(84)90207-6
– ident: e_1_3_3_16_1
  doi: 10.1145/227683.227684
– ident: e_1_3_3_36_1
  doi: 10.1080/10556789908805766
– ident: e_1_3_3_14_1
– ident: e_1_3_3_34_1
  doi: 10.1016/j.dam.2019.04.032
– ident: e_1_3_3_2_1
  doi: 10.1109/CISS.2014.6814141
– ident: e_1_3_3_11_1
SSID ssj0004146
Score 2.3046808
Snippet Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for nonconvex quadratic constrained quadratic...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 753
SubjectTerms aggregate sparsity
chordal sparsity
Computational efficiency
Computing time
Mathematical analysis
Matrices (mathematics)
Quadratic constrained quadratic programming
Quadratic programming
second-order cone programming
Semidefinite programming
Sparsity
Title Exploiting aggregate sparsity in second-order cone relaxations for quadratic constrained quadratic programming problems
URI https://www.tandfonline.com/doi/abs/10.1080/10556788.2020.1827256
https://www.proquest.com/docview/2718100646
Volume 37
WOSCitedRecordID wos000573656300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1029-4937
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004146
  issn: 1055-6788
  databaseCode: TFW
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagMMDAG1EoyAOroXUcJxkRouqAKoYCZbIcP1AlqKBJgZ_P2XGgFUIdYIkiR-c49sV3n_XdHUKnVoHfAGaWcNWWhMURI7lKDGGU5h0tlY19SqG766TfT4fD7CawCYtAq3QY2laJIvxe7X5umRc1I-7c13QE6AbojkJTShOw28tohQI0cfir_dD7Do0MAUYgQpxMHcTzWzdz5mkueemPzdpboO7mP4x9C20E9xNfVPqyjZbMeAetzyQl3EXvnpY3cnRoLB8BjruDNgwbj6dv4NEYFw5Ea-KzdmK4NdhFxHxUZ38YvgW_TqV2qqXc48KXoTB6pjWwwp7dO0JJm2IP3XavBpc9EsozEAW4tiSaaaqVzCMjMwXrCkiUSpYYALqSRtymiWK5tRZcUgOoLI_Bj6dcyziyDBpNtI8aYxjjAcISTDXLwXMxPGM65qltcwq9R4m2PJadJmL1qggVcpe7sT-JTkhxWs-rcPMqwrw20dmX2EuVvGORQDa75KL0pya2KnEiogWyrVo_RNgHCgEqmXac28cP_9D1EVqjLurCUd9YCzXKydQco1X1Vo6KyYlXeLgOuvefYXr_VA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAEH3ojBgBy4BliatusRISYQY6fxuEVpHmgSTEDH4-djpyl0QogD3KZMTtPEjf1Z9mdC9p0GvwHMLEv0kWIijgTLdWqZ4DxvG6Vd7CmFrntpv9-5vc3qtTCYVokY2pVEEf6uxo8bg9FVStyhb-oI2A3gHYehDk_BcE-TmRhsLfLnD7o3X7WRocIIRBjKVFU8P00zYZ8m2Eu_3dbeBHWX_mPxy2QxOKD0uNSYFTJlR6tkoUZLuEbefGLeEBOiqboDQI6hNgpXj0_goMMRLRBGG-Z5Oyn8tBRrYt7L6B-Fl6FPL8qgcmn8u_CNKKypjYa8sAd8RmhqU6yTq-7p4OSMhQYNTAOyHTMjDDda5ZFVmYaTBSzKlUgtQF3Fo8R1Ui1y5xw4pRZwWR6DJ88To-LICRi00QZpjGCNm4QqMNYiB9_FJpkwcdJxRwmH2aPUuCRW7SYR1bFIHdjLce33sh1ITqt9lbivMuxrkxx8ij2W9B2_CWT1M5djHzdxZZMTGf0i26oURIaboJAcjH8bHb9k6w9T75G5s8FlT_bO-xfbZJ5jDQYmwokWaYyfX-wOmdWv42HxvOu1_wP-jAJ7
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwIxEG4UjdGDbyOK2oPXKnS7XTgalWgkhAMqt6bbhyFRgiyoP99pt6sQYzjojZRMt9vOzszXzHyD0KlVEDeAmyVcVSVhccRIqhJDGKVpTUtlY08p9NBK2u16r9fohGzCLKRVOgxtc6IIb6vdxz3UtsiIO_c9HQG6AbqjMFSnCfjtRbQEoTN3St5tPn6XRoYCIxAhTqYo4vltmhn3NENe-sNYew_U3PiHtW-i9RB-4otcX7bQghlso7UpUsId9O7T8vouHRrLJ4Dj7qINg-Hx6Ru4P8CZA9GaeNZODD8NdhUxH_ndH4Z3wa8TqZ1qKfd35ttQGD01GrLCXtwzQkubbBfdN6-7lzcktGcgCnDtmGimqVYyjYxsKDhXQKJUssQA0JU04raeKJZaayEkNYDK0hjieMq1jCPLYNBEe6g0gDXuIyzBVbMUIhfDG0zHvG6rnMLsUaItj2WtjFhxKkIF7nK39mdRCxSnxb4Kt68i7GsZnX2JDXPyjnkCjekjF2N_a2LzFicimiNbKfRDBDuQCQquv-bCPn7wh6lP0Ernqilat-27Q7RKXQGGy4JjFVQajybmCC2rt3E_Gx173f8E8XkBLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+aggregate+sparsity+in+second-order+cone+relaxations+for+quadratic+constrained+quadratic+programming+problems&rft.jtitle=Optimization+methods+%26+software&rft.au=Sheen%2C+Heejune&rft.au=Yamashita%2C+Makoto&rft.date=2022-03-04&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=37&rft.issue=2&rft.spage=753&rft.epage=771&rft_id=info:doi/10.1080%2F10556788.2020.1827256&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10556788_2020_1827256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon