Exploiting aggregate sparsity in second-order cone relaxations for quadratic constrained quadratic programming problems

Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for nonconvex quadratic constrained quadratic programming problems (QCQPs), exploiting the aggregate sparsity of the data matrices in the SDP by Fukuda et al. [Exploiting sparsity in semidefin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization methods & software Jg. 37; H. 2; S. 753 - 771
Hauptverfasser: Sheen, Heejune, Yamashita, Makoto
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 04.03.2022
Taylor & Francis Ltd
Schlagworte:
ISSN:1055-6788, 1029-4937
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for nonconvex quadratic constrained quadratic programming problems (QCQPs), exploiting the aggregate sparsity of the data matrices in the SDP by Fukuda et al. [Exploiting sparsity in semidefinite programming via matrix completion I: General framework, SIAM J. Optim. 11(3) (2001), pp. 647-674] and second-order cone programming (SOCP) relaxation have been popular. In this paper, we exploit the aggregate sparsity of SOCP relaxation of nonconvex QCQPs. Specifically, we prove that exploiting the aggregate sparsity reduces the number of second-order cones in the SOCP relaxation, and that we can simplify the matrix completion procedure by Fukuda et al. in both primal and dual of the SOCP relaxation problem without losing the max-determinant property. For numerical experiments, nonconvex QCQPs from the lattice graph and pooling problem are tested as their SOCP relaxations provide the same optimal value as the SDP relaxations. We demonstrate that exploiting the aggregate sparsity improves the computational efficiency of the SOCP relaxation for the same objective value as the SDP relaxation, thus much larger problems can be handled by the proposed SOCP relaxation than the SDP relaxation.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1055-6788
1029-4937
DOI:10.1080/10556788.2020.1827256