Revolutionizing population sparsity assessment: machine learning-powered solutions for multi-objective evolutionary algorithms

Decomposed multi-objective evolutionary algorithms have recently gained attention in research, with population sparsity often evaluated through Euclidean distance. However, individuals with high sparsity tend to be located along the edges of the Pareto front, whereas those with low sparsity cluster...

Full description

Saved in:
Bibliographic Details
Published in:Engineering optimization Vol. 57; no. 11; pp. 3344 - 3377
Main Authors: Ren, Xuepeng, Wang, Maocai, Dai, Guangming, Peng, Lei, Chen, Xiaoyu, Song, Zhiming
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 02.11.2025
Taylor & Francis Ltd
Subjects:
ISSN:0305-215X, 1029-0273
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Decomposed multi-objective evolutionary algorithms have recently gained attention in research, with population sparsity often evaluated through Euclidean distance. However, individuals with high sparsity tend to be located along the edges of the Pareto front, whereas those with low sparsity cluster towards the centre. This article introduces a more accurate method for assessing individual sparsity in the objective space using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. The contributions of this work include (1) identifying the limitations of using Euclidean distance for sparsity measurement, (2) mitigating DBSCAN sensitivity to input parameters through adaptive adjustment via a genetic algorithm and (3) integrating DBSCAN with multi-objective algorithms to address the limitations of Euclidean distance by leveraging core and boundary points. Experimental results on three benchmark test problems and an engineering application involving mechanical bearings highlight the proposed algorithm's strong performance and competitiveness.
AbstractList Decomposed multi-objective evolutionary algorithms have recently gained attention in research, with population sparsity often evaluated through Euclidean distance. However, individuals with high sparsity tend to be located along the edges of the Pareto front, whereas those with low sparsity cluster towards the centre. This article introduces a more accurate method for assessing individual sparsity in the objective space using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. The contributions of this work include (1) identifying the limitations of using Euclidean distance for sparsity measurement, (2) mitigating DBSCAN sensitivity to input parameters through adaptive adjustment via a genetic algorithm and (3) integrating DBSCAN with multi-objective algorithms to address the limitations of Euclidean distance by leveraging core and boundary points. Experimental results on three benchmark test problems and an engineering application involving mechanical bearings highlight the proposed algorithm's strong performance and competitiveness.
Author Ren, Xuepeng
Song, Zhiming
Peng, Lei
Dai, Guangming
Wang, Maocai
Chen, Xiaoyu
Author_xml – sequence: 1
  givenname: Xuepeng
  orcidid: 0009-0009-1943-2413
  surname: Ren
  fullname: Ren, Xuepeng
  organization: China University of Geosciences
– sequence: 2
  givenname: Maocai
  orcidid: 0000-0002-6736-1711
  surname: Wang
  fullname: Wang, Maocai
  email: cugwangmc@126.com
  organization: China University of Geosciences
– sequence: 3
  givenname: Guangming
  surname: Dai
  fullname: Dai, Guangming
  organization: China University of Geosciences
– sequence: 4
  givenname: Lei
  surname: Peng
  fullname: Peng, Lei
  organization: China University of Geosciences
– sequence: 5
  givenname: Xiaoyu
  surname: Chen
  fullname: Chen, Xiaoyu
  organization: China University of Geosciences
– sequence: 6
  givenname: Zhiming
  surname: Song
  fullname: Song, Zhiming
  organization: China University of Geosciences
BookMark eNqFkMFq3DAQhkVJoJttH6EgyNnbsWSv7eaSEJKmsFAoCfQmtPJoo0WWHEnekBz67LWz2xxySE_DwP_9M3wn5Mh5h4R8yWGRQw1fgUPJ8vL3ggErFqzgRcWWH8gsB9ZkwCp-RGZTJptCH8lJjFuAnAPUM_LnF-68HZLxzjwbt6G97wcrp53GXoZo0hOVMWKMHbr0jXZS3RuH1KIMbgSy3j9iwJbGQ02k2gfaDTaZzK-3qJLZIX29IsPYZzc-mHTfxU_kWEsb8fNhzsnd9dXt5U22-vn9x-XFKlOc1ylrC6UbjlyhZroEzuo1tM1S18ByxiusilyqllVtWRYAfKlQLatWNZI1uGZc8zk53ff2wT8MGJPY-iG48aTgrIK6hGrk5qTcp1TwMQbUog-mGz8WOYhJtfinWkyqxUH1yJ294ZRJLw5TkMb-lz7f08aN5jr56INtRZJP1gcdpFNmfPL9ir-D-55H
CitedBy_id crossref_primary_10_1016_j_swevo_2025_102095
crossref_primary_10_1016_j_swevo_2025_101951
Cites_doi 10.1007/1-84628-137-7_6
10.1016/j.engappai.2021.104588
10.1007/s11042-020-10139-6
10.1016/j.knosys.2023.110529
10.1109/TCYB.2015.2507366
10.1371/journal.pone.0308474
10.1016/j.neucom.2023.126761
10.1016/j.eswa.2022.118915
10.1007/s40747-022-00747-0
10.1109/TEVC.4235
10.1007/s12046-017-0775-9
10.1109/CEC.2016.7743834
10.1109/5326.704576
10.1109/TEVC.2013.2281534
10.1109/TEVC.2016.2521175
10.1016/j.patcog.2020.107624
10.1016/j.jpdc.2022.06.016
10.1016/j.energy.2022.124249
10.1109/TEVC.2015.2443001
10.1016/j.neucom.2023.126892
10.1162/EVCO_a_00109
10.1145/1276958.1277190
10.1109/ICADIWT.2014.6814687
10.1016/j.inffus.2023.02.020
10.1016/j.ins.2022.11.037
10.1109/4235.996017
10.1109/TEVC.2022.3168052
10.1016/j.ins.2022.08.030
10.1016/j.swevo.2022.101161
10.1016/j.mechmachtheory.2006.10.002
10.1109/Access.6287639
10.1109/TEVC.2022.3178299
10.1109/TEVC.2013.2281535
10.1007/3-540-36970-8_34
10.1109/TPAMI.2023.3237667
10.1016/j.knosys.2022.108141
10.1109/MCI.10207
10.1109/TEVC.2014.2353672
10.1109/CEC.2003.1299427
10.1109/TEVC.2002.802873
10.1109/CEC.2018.8477730
10.1109/TEVC.2022.3155533
10.1007/3-540-44719-9_6
10.1109/TEVC.2005.851275
10.1016/j.knosys.2018.03.011
10.1109/TEVC.2017.2725902
10.1109/TEVC.2018.2791283
10.1007/3-540-44719-9_7
10.1109/MCI.2017.2742868
10.1016/j.neucom.2023.126496
10.1016/j.swevo.2022.101079
10.1016/j.eswa.2021.116126
10.1109/TEVC.2005.861417
10.1016/j.engappai.2023.105889
10.1016/j.asoc.2023.110232
10.1080/00207729608929211
10.1109/TEVC.2021.3078478
10.1016/j.ejor.2006.08.008
10.1016/j.techfore.2022.121977
10.1109/TII.2022.3211853
10.32604/cmes.2023.028632
10.1016/j.asoc.2023.110296
10.1109/TEVC.2007.892759
10.1016/j.inffus.2021.10.002
10.1109/TEVC.2017.2749619
10.1007/s00500-008-0394-9
10.3390/electronics9081295
10.1016/j.knosys.2022.109591
10.1109/TCYB.6221036
10.1109/TEVC.2016.2519378
10.1145/3205455.3205648
10.1007/978-3-540-30217-9_84
10.1109/TEVC.2013.2239648
ContentType Journal Article
Copyright 2025 Informa UK Limited, trading as Taylor & Francis Group 2025
2025 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2025 Informa UK Limited, trading as Taylor & Francis Group 2025
– notice: 2025 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/0305215X.2024.2434726
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-0273
EndPage 3377
ExternalDocumentID 10_1080_0305215X_2024_2434726
2434726
Genre Research Article
GrantInformation_xml – fundername: Hubei Excellent Young and Middle-Aged Science and Technology Innovation Team Plan
  grantid: T2021031
– fundername: Natural Science Foundation of China
  grantid: 42271391; 62006214
– fundername: Joint Funds of Equipment Pre-Research and Ministry of Education of China
  grantid: 8091B022148
– fundername: Hubei Key Research and Development Program
  grantid: 2023BIB015
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29G
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
DGEBU
NX~
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-d4cf93e3cef2f50328b0d96f8021237e741acd27d5540036cec67dc9a29eb23f3
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001405127800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-215X
IngestDate Wed Nov 12 05:11:50 EST 2025
Sat Nov 29 06:57:49 EST 2025
Tue Nov 18 20:44:37 EST 2025
Wed Nov 12 04:00:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-d4cf93e3cef2f50328b0d96f8021237e741acd27d5540036cec67dc9a29eb23f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-1943-2413
0000-0002-6736-1711
PQID 3270850700
PQPubID 53195
PageCount 34
ParticipantIDs proquest_journals_3270850700
informaworld_taylorfrancis_310_1080_0305215X_2024_2434726
crossref_citationtrail_10_1080_0305215X_2024_2434726
crossref_primary_10_1080_0305215X_2024_2434726
PublicationCentury 2000
PublicationDate 2025-11-02
PublicationDateYYYYMMDD 2025-11-02
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Engineering optimization
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_52_1
e_1_3_3_75_1
e_1_3_3_50_1
e_1_3_3_77_1
e_1_3_3_71_1
e_1_3_3_79_1
Van der Maaten Laurens (e_1_3_3_63_1) 2008; 9
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_58_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_73_1
e_1_3_3_40_1
e_1_3_3_61_1
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_69_1
e_1_3_3_80_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_67_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_65_1
Hou W. (e_1_3_3_26_1) 2018; 25
e_1_3_3_30_1
e_1_3_3_51_1
e_1_3_3_76_1
e_1_3_3_78_1
e_1_3_3_70_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_59_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_57_1
e_1_3_3_34_1
e_1_3_3_55_1
e_1_3_3_72_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_53_1
e_1_3_3_74_1
e_1_3_3_41_1
e_1_3_3_62_1
e_1_3_3_60_1
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_47_1
e_1_3_3_68_1
e_1_3_3_81_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_66_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
e_1_3_3_64_1
References_xml – ident: e_1_3_3_14_1
  doi: 10.1007/1-84628-137-7_6
– ident: e_1_3_3_36_1
  doi: 10.1016/j.engappai.2021.104588
– ident: e_1_3_3_37_1
  doi: 10.1007/s11042-020-10139-6
– ident: e_1_3_3_40_1
  doi: 10.1016/j.knosys.2023.110529
– ident: e_1_3_3_78_1
– ident: e_1_3_3_42_1
  doi: 10.1109/TCYB.2015.2507366
– ident: e_1_3_3_48_1
  doi: 10.1371/journal.pone.0308474
– ident: e_1_3_3_74_1
  doi: 10.1016/j.neucom.2023.126761
– ident: e_1_3_3_79_1
  doi: 10.1016/j.eswa.2022.118915
– ident: e_1_3_3_25_1
  doi: 10.1007/s40747-022-00747-0
– ident: e_1_3_3_59_1
  doi: 10.1109/TEVC.4235
– ident: e_1_3_3_17_1
  doi: 10.1007/s12046-017-0775-9
– ident: e_1_3_3_32_1
  doi: 10.1109/CEC.2016.7743834
– ident: e_1_3_3_29_1
  doi: 10.1109/5326.704576
– ident: e_1_3_3_30_1
  doi: 10.1109/TEVC.2013.2281534
– ident: e_1_3_3_68_1
  doi: 10.1109/TEVC.2016.2521175
– ident: e_1_3_3_9_1
  doi: 10.1016/j.patcog.2020.107624
– ident: e_1_3_3_21_1
  doi: 10.1016/j.jpdc.2022.06.016
– ident: e_1_3_3_60_1
  doi: 10.1016/j.energy.2022.124249
– ident: e_1_3_3_73_1
  doi: 10.1109/TEVC.2015.2443001
– ident: e_1_3_3_76_1
  doi: 10.1016/j.neucom.2023.126892
– ident: e_1_3_3_43_1
  doi: 10.1109/TEVC.4235
– ident: e_1_3_3_52_1
  doi: 10.1162/EVCO_a_00109
– ident: e_1_3_3_13_1
  doi: 10.1145/1276958.1277190
– ident: e_1_3_3_38_1
  doi: 10.1109/ICADIWT.2014.6814687
– ident: e_1_3_3_8_1
  doi: 10.1016/j.inffus.2023.02.020
– ident: e_1_3_3_19_1
  doi: 10.1016/j.ins.2022.11.037
– ident: e_1_3_3_12_1
  doi: 10.1109/4235.996017
– ident: e_1_3_3_67_1
  doi: 10.1109/TEVC.2022.3168052
– ident: e_1_3_3_49_1
– ident: e_1_3_3_77_1
  doi: 10.1016/j.ins.2022.08.030
– ident: e_1_3_3_5_1
  doi: 10.1016/j.swevo.2022.101161
– ident: e_1_3_3_24_1
  doi: 10.1016/j.mechmachtheory.2006.10.002
– ident: e_1_3_3_54_1
  doi: 10.1109/Access.6287639
– ident: e_1_3_3_7_1
  doi: 10.1109/TEVC.2022.3178299
– ident: e_1_3_3_11_1
  doi: 10.1109/TEVC.2013.2281535
– ident: e_1_3_3_51_1
  doi: 10.1007/3-540-36970-8_34
– ident: e_1_3_3_46_1
  doi: 10.1109/TPAMI.2023.3237667
– ident: e_1_3_3_71_1
  doi: 10.1016/j.knosys.2022.108141
– ident: e_1_3_3_58_1
  doi: 10.1109/MCI.10207
– ident: e_1_3_3_23_1
  doi: 10.1109/TEVC.2014.2353672
– ident: e_1_3_3_28_1
  doi: 10.1109/CEC.2003.1299427
– ident: e_1_3_3_31_1
  doi: 10.1109/TEVC.2002.802873
– ident: e_1_3_3_61_1
  doi: 10.1109/CEC.2018.8477730
– ident: e_1_3_3_45_1
  doi: 10.1109/TEVC.2022.3155533
– ident: e_1_3_3_50_1
  doi: 10.1007/3-540-44719-9_6
– ident: e_1_3_3_69_1
  doi: 10.1109/TEVC.2005.851275
– ident: e_1_3_3_16_1
  doi: 10.1016/j.knosys.2018.03.011
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: e_1_3_3_63_1
  article-title: Visualizing Data Using T-SNE
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_3_47_1
  doi: 10.1109/TEVC.2017.2725902
– ident: e_1_3_3_55_1
  doi: 10.1109/TEVC.2018.2791283
– ident: e_1_3_3_33_1
  doi: 10.1007/3-540-44719-9_7
– ident: e_1_3_3_57_1
  doi: 10.1109/MCI.2017.2742868
– ident: e_1_3_3_53_1
  doi: 10.1016/j.neucom.2023.126496
– ident: e_1_3_3_35_1
  doi: 10.1016/j.swevo.2022.101079
– ident: e_1_3_3_81_1
  doi: 10.1016/j.eswa.2021.116126
– ident: e_1_3_3_27_1
  doi: 10.1109/TEVC.2005.861417
– ident: e_1_3_3_20_1
  doi: 10.1016/j.engappai.2023.105889
– volume: 25
  start-page: 1044
  year: 2018
  ident: e_1_3_3_26_1
  article-title: Hybrid Multi-Objective Optimization for Hydrodynamic Bearing Design
  publication-title: Control Engineering of China
– ident: e_1_3_3_18_1
– ident: e_1_3_3_22_1
  doi: 10.1016/j.asoc.2023.110232
– ident: e_1_3_3_64_1
  doi: 10.1080/00207729608929211
– ident: e_1_3_3_65_1
  doi: 10.1109/TEVC.2021.3078478
– ident: e_1_3_3_6_1
  doi: 10.1016/j.ejor.2006.08.008
– ident: e_1_3_3_70_1
  doi: 10.1016/j.techfore.2022.121977
– ident: e_1_3_3_72_1
  doi: 10.1109/TII.2022.3211853
– ident: e_1_3_3_4_1
  doi: 10.32604/cmes.2023.028632
– ident: e_1_3_3_2_1
  doi: 10.1016/j.asoc.2023.110296
– ident: e_1_3_3_75_1
  doi: 10.1109/TEVC.2007.892759
– ident: e_1_3_3_44_1
  doi: 10.1016/j.inffus.2021.10.002
– ident: e_1_3_3_56_1
  doi: 10.1109/TEVC.2017.2749619
– ident: e_1_3_3_66_1
  doi: 10.1007/s00500-008-0394-9
– ident: e_1_3_3_3_1
  doi: 10.3390/electronics9081295
– ident: e_1_3_3_39_1
  doi: 10.1016/j.knosys.2022.109591
– ident: e_1_3_3_34_1
– ident: e_1_3_3_62_1
  doi: 10.1109/TCYB.6221036
– ident: e_1_3_3_10_1
  doi: 10.1109/TEVC.2016.2519378
– ident: e_1_3_3_15_1
  doi: 10.1145/3205455.3205648
– ident: e_1_3_3_80_1
  doi: 10.1007/978-3-540-30217-9_84
– ident: e_1_3_3_41_1
  doi: 10.1109/TEVC.2013.2239648
SSID ssj0013008
Score 2.4203207
Snippet Decomposed multi-objective evolutionary algorithms have recently gained attention in research, with population sparsity often evaluated through Euclidean...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3344
SubjectTerms adaptive weight vector adjustment
Clustering
Euclidean geometry
evolutionary algorithm
Evolutionary algorithms
Genetic algorithms
Machine learning
Multi-objective optimization
Multiple objective analysis
Parameter sensitivity
population sparsity
Title Revolutionizing population sparsity assessment: machine learning-powered solutions for multi-objective evolutionary algorithms
URI https://www.tandfonline.com/doi/abs/10.1080/0305215X.2024.2434726
https://www.proquest.com/docview/3270850700
Volume 57
WOSCitedRecordID wos001405127800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1029-0273
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013008
  issn: 0305-215X
  databaseCode: TFW
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLUQYoCBN6JQkAdWl9R264YNISoGVCFURLfI8aMUQVs1oQMD38614wQqhDrAGuk6iX1yH871OQidUWkVhzyVcK01AVAY0rEtTrSkbdNKlUiZPyh8K3q9zmAQ34Vuwiy0Vboa2hZEEd5Xu49bplnZEXfuMAqRagDVHeUNyhkX1JFuQ2bvmvr63cev_wiR16RzFsSZlGd4fhtlITotcJf-8NU-AHW3_uHRt9FmyD7xZQGXHbRixrto4xsn4R76uDfzAMfRO1zB00riC4P38T0cWFZ8nhf41bdjGhz0J4Zk6oTXjMYVqjG8H_adi2SSPhceFld3kTMY72U4mY3yp9dsHz10r_tXNySINBAF1W1ONFc2ZoYpY6ltOXa-NNJx23YcdzwTBjIWqTQVGvIWR36jjGoLrWJJYyjqmWUHaHU8GZtDhI1QUCxKpqNYcSmbKRhBOkShfm82pUlriJeLk6jAYO6ENF6SZkl0GqY3cdObhOmtoUZlNi0oPJYZxN9XPsn93okthE4StsS2XsIkCd4ATKhwzIAiio7-MPQxWqdOfNjtadM6Ws1nb-YEral5Pspmpx73n4ZbArY
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELUgIAEHaGkrQgP40KvTje3E2d5QRQQi5FClam4rrz8gCJIoLDlw4Ld3xvtBUFXlANeVnnfXHo9n7PF7hHzj2hsJcSqT1loGRuFY17cls5p3XDs1KhXhonBfDQbd0ShevguDZZWYQ_ucKCL4apzcuBldlsR9RyOFpWoE6R2XTS6FVLyzTjZQnQ4TsGHvz8tJQhRU6RDCEFPe4vlfM6_Wp1fspf9467AE9fbe4-M_kN0iAKWnucV8JGtusk92lmgJP5HnX25RWOT4CZ7QWaXyRcEBhTIOqitKzx_0PlRkOlpIUFyzGWqvOUsrw6bwgzQUL7Jpeps7WVq9Rc-hvbvr6Xyc3dw_fCa_e2fDn-es0GlgBhLcjFlpfCycMM5z30aCvjSyccd3kT5eKAdBizaWKwuhC_LfGGc6yppY8xjyeuHFF1KbTCfugFCnDOSLWtgoNlLrVgogiIg4pPCtlnZpnchydBJTkJijlsZd0iq5TovuTbB7k6J766RZwWY5i8cqQLw89EkWtk98rnWSiBXYRmknSeEQAMIVkgOqKDp8Q9MnZOt8eNVP-heDy69km6MWMW5x8wapZfNHd0Q2zSIbP8yPwyT4C8ZLBtk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAQDb8QbD6yG1Hbrhg0BFQhUIQSiW-T4UYqgrdrQgYHfztlxAgghBlgjnZPYn8939vn7ENqn0ioOcSrhWmsCoDCkYWucaEnrppYqkTJ_UfhKtFqNdju-DtWEo1BW6XJomxNFeF_tJvdA26Ii7tBhFFaqNmR3lB9Qzrig9Uk0BaFzzQH7tnn_cZAQeVE6Z0KcTXGJ56dmvixPX8hLvzlrvwI1F_7h2xfRfAg_8XGOlyU0YXrLaO4TKeEKersx44DH7is8wYNS4wuD-_FFHFiWhJ5H-NnXYxocBCg6ZOCU14zGJawx_B_2pYuknz7mLhaXb5FDaO-p0x92s4fn0Sq6a57dnpyToNJAFKS3GdFc2ZgZpoyltubo-dJIx3XbcOTxTBgIWaTSVGgIXBz7jTKqLrSKJY0hq2eWraFKr98z6wgboSBblExHseJSVlMwgniIQgJfrUqTbiBeDE6iAoW5U9J4SqoF02no3sR1bxK6dwMdlGaDnMPjN4P488gnmd88sbnSScJ-sd0uYJIEdwAmVDhqQBFFm39oeg_NXJ82k6uL1uUWmqVOiNjtb9NtVMmGL2YHTatx1h0Nd_0UeAesxQWL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionizing+population+sparsity+assessment%3A+machine+learning%E2%80%93powered+solutions+for+multi-objective+evolutionary+algorithms&rft.jtitle=Engineering+optimization&rft.au=Ren%2C+Xuepeng&rft.au=Wang%2C+Maocai&rft.au=Dai%2C+Guangming&rft.au=Peng%2C+Lei&rft.date=2025-11-02&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=57&rft.issue=11&rft.spage=3344&rft.epage=3377&rft_id=info:doi/10.1080%2F0305215X.2024.2434726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0305215X_2024_2434726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon