Revolutionizing population sparsity assessment: machine learning-powered solutions for multi-objective evolutionary algorithms
Decomposed multi-objective evolutionary algorithms have recently gained attention in research, with population sparsity often evaluated through Euclidean distance. However, individuals with high sparsity tend to be located along the edges of the Pareto front, whereas those with low sparsity cluster...
Uloženo v:
| Vydáno v: | Engineering optimization Ročník 57; číslo 11; s. 3344 - 3377 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
02.11.2025
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0305-215X, 1029-0273 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Decomposed multi-objective evolutionary algorithms have recently gained attention in research, with population sparsity often evaluated through Euclidean distance. However, individuals with high sparsity tend to be located along the edges of the Pareto front, whereas those with low sparsity cluster towards the centre. This article introduces a more accurate method for assessing individual sparsity in the objective space using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. The contributions of this work include (1) identifying the limitations of using Euclidean distance for sparsity measurement, (2) mitigating DBSCAN sensitivity to input parameters through adaptive adjustment via a genetic algorithm and (3) integrating DBSCAN with multi-objective algorithms to address the limitations of Euclidean distance by leveraging core and boundary points. Experimental results on three benchmark test problems and an engineering application involving mechanical bearings highlight the proposed algorithm's strong performance and competitiveness. |
|---|---|
| AbstractList | Decomposed multi-objective evolutionary algorithms have recently gained attention in research, with population sparsity often evaluated through Euclidean distance. However, individuals with high sparsity tend to be located along the edges of the Pareto front, whereas those with low sparsity cluster towards the centre. This article introduces a more accurate method for assessing individual sparsity in the objective space using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. The contributions of this work include (1) identifying the limitations of using Euclidean distance for sparsity measurement, (2) mitigating DBSCAN sensitivity to input parameters through adaptive adjustment via a genetic algorithm and (3) integrating DBSCAN with multi-objective algorithms to address the limitations of Euclidean distance by leveraging core and boundary points. Experimental results on three benchmark test problems and an engineering application involving mechanical bearings highlight the proposed algorithm's strong performance and competitiveness. |
| Author | Ren, Xuepeng Song, Zhiming Peng, Lei Dai, Guangming Wang, Maocai Chen, Xiaoyu |
| Author_xml | – sequence: 1 givenname: Xuepeng orcidid: 0009-0009-1943-2413 surname: Ren fullname: Ren, Xuepeng organization: China University of Geosciences – sequence: 2 givenname: Maocai orcidid: 0000-0002-6736-1711 surname: Wang fullname: Wang, Maocai email: cugwangmc@126.com organization: China University of Geosciences – sequence: 3 givenname: Guangming surname: Dai fullname: Dai, Guangming organization: China University of Geosciences – sequence: 4 givenname: Lei surname: Peng fullname: Peng, Lei organization: China University of Geosciences – sequence: 5 givenname: Xiaoyu surname: Chen fullname: Chen, Xiaoyu organization: China University of Geosciences – sequence: 6 givenname: Zhiming surname: Song fullname: Song, Zhiming organization: China University of Geosciences |
| BookMark | eNqFkMFq3DAQhkVJoJttH6EgyNnbsWSv7eaSEJKmsFAoCfQmtPJoo0WWHEnekBz67LWz2xxySE_DwP_9M3wn5Mh5h4R8yWGRQw1fgUPJ8vL3ggErFqzgRcWWH8gsB9ZkwCp-RGZTJptCH8lJjFuAnAPUM_LnF-68HZLxzjwbt6G97wcrp53GXoZo0hOVMWKMHbr0jXZS3RuH1KIMbgSy3j9iwJbGQ02k2gfaDTaZzK-3qJLZIX29IsPYZzc-mHTfxU_kWEsb8fNhzsnd9dXt5U22-vn9x-XFKlOc1ylrC6UbjlyhZroEzuo1tM1S18ByxiusilyqllVtWRYAfKlQLatWNZI1uGZc8zk53ff2wT8MGJPY-iG48aTgrIK6hGrk5qTcp1TwMQbUog-mGz8WOYhJtfinWkyqxUH1yJ294ZRJLw5TkMb-lz7f08aN5jr56INtRZJP1gcdpFNmfPL9ir-D-55H |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2025_102095 crossref_primary_10_1016_j_swevo_2025_101951 |
| Cites_doi | 10.1007/1-84628-137-7_6 10.1016/j.engappai.2021.104588 10.1007/s11042-020-10139-6 10.1016/j.knosys.2023.110529 10.1109/TCYB.2015.2507366 10.1371/journal.pone.0308474 10.1016/j.neucom.2023.126761 10.1016/j.eswa.2022.118915 10.1007/s40747-022-00747-0 10.1109/TEVC.4235 10.1007/s12046-017-0775-9 10.1109/CEC.2016.7743834 10.1109/5326.704576 10.1109/TEVC.2013.2281534 10.1109/TEVC.2016.2521175 10.1016/j.patcog.2020.107624 10.1016/j.jpdc.2022.06.016 10.1016/j.energy.2022.124249 10.1109/TEVC.2015.2443001 10.1016/j.neucom.2023.126892 10.1162/EVCO_a_00109 10.1145/1276958.1277190 10.1109/ICADIWT.2014.6814687 10.1016/j.inffus.2023.02.020 10.1016/j.ins.2022.11.037 10.1109/4235.996017 10.1109/TEVC.2022.3168052 10.1016/j.ins.2022.08.030 10.1016/j.swevo.2022.101161 10.1016/j.mechmachtheory.2006.10.002 10.1109/Access.6287639 10.1109/TEVC.2022.3178299 10.1109/TEVC.2013.2281535 10.1007/3-540-36970-8_34 10.1109/TPAMI.2023.3237667 10.1016/j.knosys.2022.108141 10.1109/MCI.10207 10.1109/TEVC.2014.2353672 10.1109/CEC.2003.1299427 10.1109/TEVC.2002.802873 10.1109/CEC.2018.8477730 10.1109/TEVC.2022.3155533 10.1007/3-540-44719-9_6 10.1109/TEVC.2005.851275 10.1016/j.knosys.2018.03.011 10.1109/TEVC.2017.2725902 10.1109/TEVC.2018.2791283 10.1007/3-540-44719-9_7 10.1109/MCI.2017.2742868 10.1016/j.neucom.2023.126496 10.1016/j.swevo.2022.101079 10.1016/j.eswa.2021.116126 10.1109/TEVC.2005.861417 10.1016/j.engappai.2023.105889 10.1016/j.asoc.2023.110232 10.1080/00207729608929211 10.1109/TEVC.2021.3078478 10.1016/j.ejor.2006.08.008 10.1016/j.techfore.2022.121977 10.1109/TII.2022.3211853 10.32604/cmes.2023.028632 10.1016/j.asoc.2023.110296 10.1109/TEVC.2007.892759 10.1016/j.inffus.2021.10.002 10.1109/TEVC.2017.2749619 10.1007/s00500-008-0394-9 10.3390/electronics9081295 10.1016/j.knosys.2022.109591 10.1109/TCYB.6221036 10.1109/TEVC.2016.2519378 10.1145/3205455.3205648 10.1007/978-3-540-30217-9_84 10.1109/TEVC.2013.2239648 |
| ContentType | Journal Article |
| Copyright | 2025 Informa UK Limited, trading as Taylor & Francis Group 2025 2025 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2025 Informa UK Limited, trading as Taylor & Francis Group 2025 – notice: 2025 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1080/0305215X.2024.2434726 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-0273 |
| EndPage | 3377 |
| ExternalDocumentID | 10_1080_0305215X_2024_2434726 2434726 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: Hubei Excellent Young and Middle-Aged Science and Technology Innovation Team Plan grantid: T2021031 – fundername: Natural Science Foundation of China grantid: 42271391; 62006214 – fundername: Joint Funds of Equipment Pre-Research and Ministry of Education of China grantid: 8091B022148 – fundername: Hubei Key Research and Development Program grantid: 2023BIB015 |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29G 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION DGEBU NX~ 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c338t-d4cf93e3cef2f50328b0d96f8021237e741acd27d5540036cec67dc9a29eb23f3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001405127800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-215X |
| IngestDate | Wed Nov 12 05:11:50 EST 2025 Sat Nov 29 06:57:49 EST 2025 Tue Nov 18 20:44:37 EST 2025 Wed Nov 12 04:00:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-d4cf93e3cef2f50328b0d96f8021237e741acd27d5540036cec67dc9a29eb23f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0009-1943-2413 0000-0002-6736-1711 |
| PQID | 3270850700 |
| PQPubID | 53195 |
| PageCount | 34 |
| ParticipantIDs | proquest_journals_3270850700 informaworld_taylorfrancis_310_1080_0305215X_2024_2434726 crossref_citationtrail_10_1080_0305215X_2024_2434726 crossref_primary_10_1080_0305215X_2024_2434726 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-02 |
| PublicationDateYYYYMMDD | 2025-11-02 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Engineering optimization |
| PublicationYear | 2025 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_3_52_1 e_1_3_3_75_1 e_1_3_3_50_1 e_1_3_3_77_1 e_1_3_3_71_1 e_1_3_3_79_1 Van der Maaten Laurens (e_1_3_3_63_1) 2008; 9 e_1_3_3_18_1 e_1_3_3_39_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_58_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_56_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_54_1 e_1_3_3_73_1 e_1_3_3_40_1 e_1_3_3_61_1 e_1_3_3_7_1 e_1_3_3_9_1 e_1_3_3_29_1 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_69_1 e_1_3_3_80_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_67_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_65_1 Hou W. (e_1_3_3_26_1) 2018; 25 e_1_3_3_30_1 e_1_3_3_51_1 e_1_3_3_76_1 e_1_3_3_78_1 e_1_3_3_70_1 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_59_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_57_1 e_1_3_3_34_1 e_1_3_3_55_1 e_1_3_3_72_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_53_1 e_1_3_3_74_1 e_1_3_3_41_1 e_1_3_3_62_1 e_1_3_3_60_1 e_1_3_3_6_1 e_1_3_3_8_1 e_1_3_3_28_1 e_1_3_3_24_1 e_1_3_3_49_1 e_1_3_3_47_1 e_1_3_3_68_1 e_1_3_3_81_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_66_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 e_1_3_3_64_1 |
| References_xml | – ident: e_1_3_3_14_1 doi: 10.1007/1-84628-137-7_6 – ident: e_1_3_3_36_1 doi: 10.1016/j.engappai.2021.104588 – ident: e_1_3_3_37_1 doi: 10.1007/s11042-020-10139-6 – ident: e_1_3_3_40_1 doi: 10.1016/j.knosys.2023.110529 – ident: e_1_3_3_78_1 – ident: e_1_3_3_42_1 doi: 10.1109/TCYB.2015.2507366 – ident: e_1_3_3_48_1 doi: 10.1371/journal.pone.0308474 – ident: e_1_3_3_74_1 doi: 10.1016/j.neucom.2023.126761 – ident: e_1_3_3_79_1 doi: 10.1016/j.eswa.2022.118915 – ident: e_1_3_3_25_1 doi: 10.1007/s40747-022-00747-0 – ident: e_1_3_3_59_1 doi: 10.1109/TEVC.4235 – ident: e_1_3_3_17_1 doi: 10.1007/s12046-017-0775-9 – ident: e_1_3_3_32_1 doi: 10.1109/CEC.2016.7743834 – ident: e_1_3_3_29_1 doi: 10.1109/5326.704576 – ident: e_1_3_3_30_1 doi: 10.1109/TEVC.2013.2281534 – ident: e_1_3_3_68_1 doi: 10.1109/TEVC.2016.2521175 – ident: e_1_3_3_9_1 doi: 10.1016/j.patcog.2020.107624 – ident: e_1_3_3_21_1 doi: 10.1016/j.jpdc.2022.06.016 – ident: e_1_3_3_60_1 doi: 10.1016/j.energy.2022.124249 – ident: e_1_3_3_73_1 doi: 10.1109/TEVC.2015.2443001 – ident: e_1_3_3_76_1 doi: 10.1016/j.neucom.2023.126892 – ident: e_1_3_3_43_1 doi: 10.1109/TEVC.4235 – ident: e_1_3_3_52_1 doi: 10.1162/EVCO_a_00109 – ident: e_1_3_3_13_1 doi: 10.1145/1276958.1277190 – ident: e_1_3_3_38_1 doi: 10.1109/ICADIWT.2014.6814687 – ident: e_1_3_3_8_1 doi: 10.1016/j.inffus.2023.02.020 – ident: e_1_3_3_19_1 doi: 10.1016/j.ins.2022.11.037 – ident: e_1_3_3_12_1 doi: 10.1109/4235.996017 – ident: e_1_3_3_67_1 doi: 10.1109/TEVC.2022.3168052 – ident: e_1_3_3_49_1 – ident: e_1_3_3_77_1 doi: 10.1016/j.ins.2022.08.030 – ident: e_1_3_3_5_1 doi: 10.1016/j.swevo.2022.101161 – ident: e_1_3_3_24_1 doi: 10.1016/j.mechmachtheory.2006.10.002 – ident: e_1_3_3_54_1 doi: 10.1109/Access.6287639 – ident: e_1_3_3_7_1 doi: 10.1109/TEVC.2022.3178299 – ident: e_1_3_3_11_1 doi: 10.1109/TEVC.2013.2281535 – ident: e_1_3_3_51_1 doi: 10.1007/3-540-36970-8_34 – ident: e_1_3_3_46_1 doi: 10.1109/TPAMI.2023.3237667 – ident: e_1_3_3_71_1 doi: 10.1016/j.knosys.2022.108141 – ident: e_1_3_3_58_1 doi: 10.1109/MCI.10207 – ident: e_1_3_3_23_1 doi: 10.1109/TEVC.2014.2353672 – ident: e_1_3_3_28_1 doi: 10.1109/CEC.2003.1299427 – ident: e_1_3_3_31_1 doi: 10.1109/TEVC.2002.802873 – ident: e_1_3_3_61_1 doi: 10.1109/CEC.2018.8477730 – ident: e_1_3_3_45_1 doi: 10.1109/TEVC.2022.3155533 – ident: e_1_3_3_50_1 doi: 10.1007/3-540-44719-9_6 – ident: e_1_3_3_69_1 doi: 10.1109/TEVC.2005.851275 – ident: e_1_3_3_16_1 doi: 10.1016/j.knosys.2018.03.011 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: e_1_3_3_63_1 article-title: Visualizing Data Using T-SNE publication-title: Journal of Machine Learning Research – ident: e_1_3_3_47_1 doi: 10.1109/TEVC.2017.2725902 – ident: e_1_3_3_55_1 doi: 10.1109/TEVC.2018.2791283 – ident: e_1_3_3_33_1 doi: 10.1007/3-540-44719-9_7 – ident: e_1_3_3_57_1 doi: 10.1109/MCI.2017.2742868 – ident: e_1_3_3_53_1 doi: 10.1016/j.neucom.2023.126496 – ident: e_1_3_3_35_1 doi: 10.1016/j.swevo.2022.101079 – ident: e_1_3_3_81_1 doi: 10.1016/j.eswa.2021.116126 – ident: e_1_3_3_27_1 doi: 10.1109/TEVC.2005.861417 – ident: e_1_3_3_20_1 doi: 10.1016/j.engappai.2023.105889 – volume: 25 start-page: 1044 year: 2018 ident: e_1_3_3_26_1 article-title: Hybrid Multi-Objective Optimization for Hydrodynamic Bearing Design publication-title: Control Engineering of China – ident: e_1_3_3_18_1 – ident: e_1_3_3_22_1 doi: 10.1016/j.asoc.2023.110232 – ident: e_1_3_3_64_1 doi: 10.1080/00207729608929211 – ident: e_1_3_3_65_1 doi: 10.1109/TEVC.2021.3078478 – ident: e_1_3_3_6_1 doi: 10.1016/j.ejor.2006.08.008 – ident: e_1_3_3_70_1 doi: 10.1016/j.techfore.2022.121977 – ident: e_1_3_3_72_1 doi: 10.1109/TII.2022.3211853 – ident: e_1_3_3_4_1 doi: 10.32604/cmes.2023.028632 – ident: e_1_3_3_2_1 doi: 10.1016/j.asoc.2023.110296 – ident: e_1_3_3_75_1 doi: 10.1109/TEVC.2007.892759 – ident: e_1_3_3_44_1 doi: 10.1016/j.inffus.2021.10.002 – ident: e_1_3_3_56_1 doi: 10.1109/TEVC.2017.2749619 – ident: e_1_3_3_66_1 doi: 10.1007/s00500-008-0394-9 – ident: e_1_3_3_3_1 doi: 10.3390/electronics9081295 – ident: e_1_3_3_39_1 doi: 10.1016/j.knosys.2022.109591 – ident: e_1_3_3_34_1 – ident: e_1_3_3_62_1 doi: 10.1109/TCYB.6221036 – ident: e_1_3_3_10_1 doi: 10.1109/TEVC.2016.2519378 – ident: e_1_3_3_15_1 doi: 10.1145/3205455.3205648 – ident: e_1_3_3_80_1 doi: 10.1007/978-3-540-30217-9_84 – ident: e_1_3_3_41_1 doi: 10.1109/TEVC.2013.2239648 |
| SSID | ssj0013008 |
| Score | 2.420404 |
| Snippet | Decomposed multi-objective evolutionary algorithms have recently gained attention in research, with population sparsity often evaluated through Euclidean... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3344 |
| SubjectTerms | adaptive weight vector adjustment Clustering Euclidean geometry evolutionary algorithm Evolutionary algorithms Genetic algorithms Machine learning Multi-objective optimization Multiple objective analysis Parameter sensitivity population sparsity |
| Title | Revolutionizing population sparsity assessment: machine learning-powered solutions for multi-objective evolutionary algorithms |
| URI | https://www.tandfonline.com/doi/abs/10.1080/0305215X.2024.2434726 https://www.proquest.com/docview/3270850700 |
| Volume | 57 |
| WOSCitedRecordID | wos001405127800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals customDbUrl: eissn: 1029-0273 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013008 issn: 0305-215X databaseCode: TFW dateStart: 19740101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0R5yQNroHWSOmZDiIoBVQiB6BY5fpSivtQGBgZ-O3eOE1oh1AHWSHdJzud7OJfvI-QMcoY0SN8eJVIEUYxxsGmbAWtBca9sImLrQFzveKeTdLvi3k8TzvxYJfbQtgCKcLEaN7fMZuVE3AX6KGSqLnR3LDpnURhxhqDbkPpxaz62n7-_IzQcJx1KBChS_sPzm5aF7LSAXfojVrsE1N78h0ffIhu--qRXhbtskxUz2iHrc5iEu-Tzwbx7d-x_wBU6qSi-KEQfN8NBZYXneUmHbhzTUM8_0QsmSLxmNK28msL7UTe5GIyz1yLC0uoucgr6Br3xtJ-_DGd75Kl983h9G3iShkBBd5sHOlJWhCZUxjIbIzpf1tCiZRPEjg-5gYpFKs24hroFwW-UUS2ulZBMQFMf2nCf1EbjkTkgtNVMTMYzaHJiBnbRCeOxltxoLgX0daZOonJxUuURzJFIY5A2S6BTb94UzZt689bJeSU2KSA8lgmI-ZVPc3d2YguikzRcIntcuknqowGIMI7IgLzROPyD6iOyxpB8GM-02TGp5dM3c0JW1Xven01Pnd9_AU1ZAQQ |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELXYJODAjiirD1wDjbM45oYQFYjSAyqityj1UopKW4XQAwe-nRlnoQghDnCNNE4yHs9ij98j5BhiRqKRvt2PEuH4AfpB17gOCyG5lyYSgbEgrk3eakWdjpi-C4NtlVhDmxwowvpqXNy4GV22xJ2ikUKo6kB5x_wT5ns-Z-EsmQ8g1iJ-frvx8HmSULesdCjioEx5i-enYb7Epy_opd-8tQ1BjdX_-Pg1slIkoPQ8t5h1MqOHG2R5CpZwk7zf6Ulhkf03eELHFcsXBQdk2zhoUkF6ntFn25GpaUFB0XPGyL2mFa0Mm8IPUtu86Iy6T7mTpdVbkhTGG_RGaT97fH7ZIveNy_bFlVPwNDgSCtzMUb40wtOe1IaZAAH6unUlQhMhfLzHNSQtiVSMK0hdEP9GahlyJUXCBNT1nvG2ydxwNNQ7hIZupLu8C3VOwEAvKmI8UAnXiicCSjtdI345O7EsQMyRS2MQuyXWaaHeGNUbF-qtkZNKbJyjePwmIKanPs7s9onJuU5i7xfZ_dJO4sIhgAjjCA7I6_XdPwx9RBav2rfNuHndutkjSwy5iHGLm-2TuSx91QdkQU6y_kt6aBfBB4oKBS4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELXYhODAjtjxgWtK6yyOuSGgAoEqhED0FqVeSlE3tYEDB76dGccJVAhxgGukmSTj8SzO5D1CjiBnpBrp24M4FV4QYhysmZrHIijupYlFaCyI6w1vNOJmU9y6acKxG6vEHtrkQBE2VuPmHipTTMQdo49CpmpCd8eCCgv8gLNomsxC6Ryhk9_XHz8_JFQtKR2KeChT_MTzk5qJ9DQBXvotWNsMVF_-h2dfIUuu_KSnub-skindXyOLX0AJ18n7nX51_th5gyt0WHJ8UQg_doiDpiWg5wnt2XlMTR0BRdsbIvOaVrR0awrvR-3oojdoPechlpZ3SUegr9sejDrZU2-8QR7qF_dnl55jafAktLeZpwJphK99qQ0zIcLztapKRCZG8HifayhZUqkYV1C4IPqN1DLiSoqUCejqfeNvkpn-oK-3CI1qsW7xFnQ5IQO7qJjxUKVcK54KaOz0NgmKxUmkgzBHJo1uUiuQTp15EzRv4sy7TSql2DDH8PhNQHxd-SSzhycmZzpJ_F9k9wo3SVw4ABHGERqQV6s7f1B9SOZvz-vJzVXjepcsMCQixvNttkdmstGL3idz8jXrjEcHdgt8AHUBA-A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionizing+population+sparsity+assessment%3A+machine+learning%E2%80%93powered+solutions+for+multi-objective+evolutionary+algorithms&rft.jtitle=Engineering+optimization&rft.au=Ren%2C+Xuepeng&rft.au=Wang%2C+Maocai&rft.au=Dai%2C+Guangming&rft.au=Peng%2C+Lei&rft.date=2025-11-02&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=57&rft.issue=11&rft.spage=3344&rft.epage=3377&rft_id=info:doi/10.1080%2F0305215X.2024.2434726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0305215X_2024_2434726 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon |