A novel Hybrid Harris hawk sine cosine optimization algorithm for reactive power optimization problem

Reactive power optimisation can effectively reduce active power loss and improve voltage quality, which is a great significance for power system planning. When the reactive power optimisation problem is solved by Harris Hawk optimisation (HHO) algorithm, there are slow convergence and falling into l...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental & theoretical artificial intelligence Vol. 36; no. 6; pp. 901 - 937
Main Authors: Jiao, Shangbin, Wang, Chen, Gao, Rui, Li, Yuxing, Zhang, Qing
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 17.08.2024
Taylor & Francis Ltd
Subjects:
ISSN:0952-813X, 1362-3079
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Reactive power optimisation can effectively reduce active power loss and improve voltage quality, which is a great significance for power system planning. When the reactive power optimisation problem is solved by Harris Hawk optimisation (HHO) algorithm, there are slow convergence and falling into local optima. This is caused by the multiple random parameters in HHO's exploration phase. To solve this problem, the Improved Logistic Chaotic mapping, Sine and Cosine Algorithm (SCA), the dynamic adaptive inertia weights and greedy strategy are introduced; the aim is to speed up convergence, reduce blind spots and improve the search capability. The improved algorithm was tested on the classical 23 benchmark functions; Wilcoxon's signed-rank test and Friedman test were tested, the results show that the improved algorithm can obtain better performance. The improved algorithm is applied to the reactive power optimisation problem in distribution networks with distributed generators (DG). When the reactive power optimisation problem is solved by the improved algorithms HHO, WOA, CSO, CS and PSO, respectively, the improved algorithm can obtain the lowest active power loss. Compared with no optimisation, active power loss is reduced by 33.19%. Finally, the node voltage quality ensures the safe operation of the system.
AbstractList Reactive power optimisation can effectively reduce active power loss and improve voltage quality, which is a great significance for power system planning. When the reactive power optimisation problem is solved by Harris Hawk optimisation (HHO) algorithm, there are slow convergence and falling into local optima. This is caused by the multiple random parameters in HHO's exploration phase. To solve this problem, the Improved Logistic Chaotic mapping, Sine and Cosine Algorithm (SCA), the dynamic adaptive inertia weights and greedy strategy are introduced; the aim is to speed up convergence, reduce blind spots and improve the search capability. The improved algorithm was tested on the classical 23 benchmark functions; Wilcoxon's signed-rank test and Friedman test were tested, the results show that the improved algorithm can obtain better performance. The improved algorithm is applied to the reactive power optimisation problem in distribution networks with distributed generators (DG). When the reactive power optimisation problem is solved by the improved algorithms HHO, WOA, CSO, CS and PSO, respectively, the improved algorithm can obtain the lowest active power loss. Compared with no optimisation, active power loss is reduced by 33.19%. Finally, the node voltage quality ensures the safe operation of the system.
Author Gao, Rui
Wang, Chen
Li, Yuxing
Jiao, Shangbin
Zhang, Qing
Author_xml – sequence: 1
  givenname: Shangbin
  surname: Jiao
  fullname: Jiao, Shangbin
  organization: Xi'an University of Technology
– sequence: 2
  givenname: Chen
  orcidid: 0000-0002-2803-2632
  surname: Wang
  fullname: Wang, Chen
  email: 1180311029@stu.xaut.edu.cn
  organization: Xi'an University of Technology
– sequence: 3
  givenname: Rui
  surname: Gao
  fullname: Gao, Rui
  organization: Baoji University of Arts and Sciences
– sequence: 4
  givenname: Yuxing
  surname: Li
  fullname: Li, Yuxing
  organization: Xi'an University of Technology
– sequence: 5
  givenname: Qing
  surname: Zhang
  fullname: Zhang, Qing
  organization: Xi'an University of Technology
BookMark eNqFkE1LAzEQhoMoWD9-ghDwvDVfu93gxVLUCoIXBW8hm2Q1urups2lL_fVmrR70oKcZmOedGZ4DtNuFziF0QsmYkpKcEZmzkvLHMSOMjRmlORViB40oL1jGyUTuotHAZAO0jw76_oUQkig6Qm6Ku7ByDZ5vKvAWzzWA7_GzXr_i3ncOm_BZwiL61r_r6EOHdfMUwMfnFtcBMDhtol85vAhrBz_JBYSqce0R2qt107vjr3qIHq4u72fz7Pbu-mY2vc0M52XMjGXSViWVhRVCl9I5VlphUs81pVLWE63z0lBjJ0zkBbfcypwWaZCLKneaH6LT7d50923p-qhewhK6dFIlD6KUtChEos63lIHQ9-BqZXz8_DeC9o2iRA1e1bdXNXhVX15TOv-VXoBvNWz-zV1sc75L1lq9DtBYFfWmCVCD7oxPT_694gO1dZLS
CitedBy_id crossref_primary_10_1007_s11831_024_10218_z
crossref_primary_10_1038_s41598_025_13988_z
Cites_doi 10.3233/JIFS-201075
10.1007/s00366-018-0620-8
10.1080/0952813X.2013.782348
10.1080/0952813X.2020.1725651
10.3390/app11125385
10.1007/s10614-017-9716-2
10.1016/j.ins.2021.11.052
10.1016/j.knosys.2015.12.022
10.1016/j.rser.2021.111295
10.1109/TCYB.2020.3033005
10.1007/s00366-011-0241-y
10.7667/j.issn.1674-3415.2012.07.006
10.1007/s11042-016-3907-z
10.22111/ieco.2020.35116.1296
10.22075/ijnaa.2020.4245
10.1016/j.knosys.2020.106461
10.1016/j.swevo.2018.02.017
10.1109/ACCESS.2019.2947308
10.1109/61.141868
10.1088/1742-6596/1480/1/012029
10.1016/j.epsr.2016.09.025
10.1007/s12559-021-09871-4
10.1007/s00521-021-05720-5
10.1142/S0219622021500176
10.1007/s00500-020-05469-4
10.1016/j.energy.2018.07.088
10.1016/j.chaos.2020.110409
10.1007/s00366-019-00828-8
10.1016/j.renene.2019.05.008
10.1080/0740817X.2010.532856
10.1016/j.energy.2020.117804
10.1016/j.energy.2020.118218
10.1109/TSMC.2020.3030792
10.1016/j.applthermaleng.2018.04.008
10.1109/ACCESS.2019.2921545
10.1007/s00500-020-05527-x
10.1109/CEC.2014.6900618
10.3390/app112311202
10.1016/j.applthermaleng.2018.11.122
10.1007/s10994-015-5522-z
10.1109/TIM.2021.3059500
10.1007/s00366-020-00996-y
10.1016/j.future.2019.02.028
10.1002/er.6891
10.1080/00207160108805080
10.1142/S0218348X21500122
10.1109/3477.484436
10.3139/120.111377
10.1007/s12530-019-09271-y
10.1007/s00366-019-00834-w
10.3390/su13010090
10.1126/science.220.4598.671
10.1007/978-3-319-11857-4_10
10.1007/s00521-021-05708-1
10.1016/j.future.2017.10.052
10.1016/j.est.2019.101057
10.1016/j.ins.2009.12.010
10.1016/j.advengsoft.2016.01.008
10.1109/4235.771163
10.1016/j.engappai.2014.12.001
10.1007/s12652-017-0600-7
10.1007/s00521-015-1870-7
10.1080/0952813X.2017.1354082
10.1109/59.466531
10.1080/0952813X.2020.1836031
10.1016/j.eswa.2018.10.050
10.4156/ijact.vol4.issue3.34
10.1109/4235.585893
10.1109/TITS.2019.2918438
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
JQ2
DOI 10.1080/0952813X.2022.2115144
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1362-3079
EndPage 937
ExternalDocumentID 10_1080_0952813X_2022_2115144
2115144
Genre Research Article
GrantInformation_xml – fundername: Open project of Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing
  grantid: No. 2020CP10
– fundername: Shaanxi Provincial Key Research and Development Project
  grantid: No. 2019GY-099
– fundername: National Natural Science Foundation of China
  grantid: No. 61871318
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
29K
2DF
30N
4.4
5GY
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABIVO
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ACUHS
ADCVX
ADGTB
ADMLS
ADXPE
AEGXH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D-I
DGEBU
DKSSO
EAP
EBR
EBS
EBU
ECS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MK~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
AEMOZ
CITATION
ADYSH
JQ2
ID FETCH-LOGICAL-c338t-cd29db8196d44a89ee28d4c44a3a1199f7aa58c1cd724563d3d951699f54b5ea3
IEDL.DBID TFW
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000853391300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-813X
IngestDate Sat Jul 26 03:31:59 EDT 2025
Sat Nov 29 05:02:51 EST 2025
Tue Nov 18 20:56:48 EST 2025
Mon Oct 20 23:48:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-cd29db8196d44a89ee28d4c44a3a1199f7aa58c1cd724563d3d951699f54b5ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2803-2632
PQID 3074891664
PQPubID 53008
PageCount 37
ParticipantIDs proquest_journals_3074891664
informaworld_taylorfrancis_310_1080_0952813X_2022_2115144
crossref_citationtrail_10_1080_0952813X_2022_2115144
crossref_primary_10_1080_0952813X_2022_2115144
PublicationCentury 2000
PublicationDate 2024-08-17
PublicationDateYYYYMMDD 2024-08-17
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-17
  day: 17
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of experimental & theoretical artificial intelligence
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_28_1
e_1_3_2_49_1
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_66_1
e_1_3_2_22_1
e_1_3_2_43_1
e_1_3_2_64_1
e_1_3_2_24_1
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_47_1
e_1_3_2_68_1
e_1_3_2_62_1
e_1_3_2_60_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_7_1
Dréo J. (e_1_3_2_18_1) 2006
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_35_1
e_1_3_2_58_1
e_1_3_2_5_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_56_1
e_1_3_2_3_1
e_1_3_2_50_1
e_1_3_2_73_1
e_1_3_2_71_1
e_1_3_2_27_1
e_1_3_2_29_1
e_1_3_2_42_1
e_1_3_2_65_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_63_1
e_1_3_2_23_1
e_1_3_2_46_1
e_1_3_2_69_1
e_1_3_2_25_1
e_1_3_2_48_1
e_1_3_2_67_1
e_1_3_2_61_1
e_1_3_2_40_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_55_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_53_1
e_1_3_2_6_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_59_1
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_36_1
e_1_3_2_57_1
Demiar J. (e_1_3_2_12_1) 2006; 7
e_1_3_2_51_1
e_1_3_2_72_1
e_1_3_2_70_1
References_xml – ident: e_1_3_2_37_1
  doi: 10.3233/JIFS-201075
– ident: e_1_3_2_27_1
  doi: 10.1007/s00366-018-0620-8
– ident: e_1_3_2_58_1
  doi: 10.1080/0952813X.2013.782348
– ident: e_1_3_2_29_1
  doi: 10.1080/0952813X.2020.1725651
– ident: e_1_3_2_10_1
  doi: 10.3390/app11125385
– ident: e_1_3_2_2_1
  doi: 10.1007/s10614-017-9716-2
– ident: e_1_3_2_15_1
  doi: 10.1016/j.ins.2021.11.052
– ident: e_1_3_2_46_1
  doi: 10.1016/j.knosys.2015.12.022
– ident: e_1_3_2_67_1
  doi: 10.1016/j.rser.2021.111295
– ident: e_1_3_2_65_1
  doi: 10.1109/TCYB.2020.3033005
– ident: e_1_3_2_23_1
  doi: 10.1007/s00366-011-0241-y
– ident: e_1_3_2_9_1
  doi: 10.7667/j.issn.1674-3415.2012.07.006
– volume: 7
  start-page: 1
  issue: 2006
  year: 2006
  ident: e_1_3_2_12_1
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_2_22_1
  doi: 10.1007/s11042-016-3907-z
– ident: e_1_3_2_38_1
  doi: 10.22111/ieco.2020.35116.1296
– ident: e_1_3_2_36_1
  doi: 10.22075/ijnaa.2020.4245
– ident: e_1_3_2_21_1
  doi: 10.1016/j.knosys.2020.106461
– ident: e_1_3_2_73_1
  doi: 10.1016/j.swevo.2018.02.017
– ident: e_1_3_2_19_1
  doi: 10.1109/ACCESS.2019.2947308
– ident: e_1_3_2_28_1
  doi: 10.1109/61.141868
– ident: e_1_3_2_56_1
  doi: 10.1088/1742-6596/1480/1/012029
– ident: e_1_3_2_53_1
  doi: 10.1016/j.epsr.2016.09.025
– ident: e_1_3_2_71_1
  doi: 10.1007/s12559-021-09871-4
– ident: e_1_3_2_4_1
  doi: 10.1007/s00521-021-05720-5
– ident: e_1_3_2_54_1
  doi: 10.1142/S0219622021500176
– ident: e_1_3_2_20_1
  doi: 10.1007/s00500-020-05469-4
– ident: e_1_3_2_25_1
  doi: 10.1016/j.energy.2018.07.088
– ident: e_1_3_2_34_1
  doi: 10.1016/j.chaos.2020.110409
– ident: e_1_3_2_52_1
  doi: 10.1007/s00366-019-00828-8
– ident: e_1_3_2_7_1
  doi: 10.1016/j.renene.2019.05.008
– ident: e_1_3_2_69_1
  doi: 10.1080/0740817X.2010.532856
– ident: e_1_3_2_33_1
  doi: 10.1016/j.energy.2020.117804
– ident: e_1_3_2_55_1
  doi: 10.1016/j.energy.2020.118218
– ident: e_1_3_2_14_1
  doi: 10.1109/TSMC.2020.3030792
– volume-title: Metaheuristics for hard optimization: Methods and case studies
  year: 2006
  ident: e_1_3_2_18_1
– ident: e_1_3_2_40_1
  doi: 10.1016/j.applthermaleng.2018.04.008
– ident: e_1_3_2_5_1
  doi: 10.1109/ACCESS.2019.2921545
– ident: e_1_3_2_13_1
  doi: 10.1007/s00500-020-05527-x
– ident: e_1_3_2_39_1
  doi: 10.1109/CEC.2014.6900618
– ident: e_1_3_2_57_1
  doi: 10.3390/app112311202
– ident: e_1_3_2_59_1
  doi: 10.1016/j.applthermaleng.2018.11.122
– ident: e_1_3_2_61_1
  doi: 10.1007/s10994-015-5522-z
– ident: e_1_3_2_72_1
  doi: 10.1109/TIM.2021.3059500
– ident: e_1_3_2_31_1
  doi: 10.1007/s00366-020-00996-y
– ident: e_1_3_2_32_1
  doi: 10.1016/j.future.2019.02.028
– ident: e_1_3_2_44_1
  doi: 10.1002/er.6891
– ident: e_1_3_2_16_1
  doi: 10.1080/00207160108805080
– ident: e_1_3_2_35_1
  doi: 10.1142/S0218348X21500122
– ident: e_1_3_2_17_1
  doi: 10.1109/3477.484436
– ident: e_1_3_2_70_1
  doi: 10.3139/120.111377
– ident: e_1_3_2_49_1
  doi: 10.1007/s12530-019-09271-y
– ident: e_1_3_2_51_1
  doi: 10.1007/s00366-019-00834-w
– ident: e_1_3_2_11_1
  doi: 10.3390/su13010090
– ident: e_1_3_2_41_1
  doi: 10.1126/science.220.4598.671
– ident: e_1_3_2_45_1
  doi: 10.1007/978-3-319-11857-4_10
– ident: e_1_3_2_60_1
  doi: 10.1007/s00521-021-05708-1
– ident: e_1_3_2_42_1
  doi: 10.1016/j.future.2017.10.052
– ident: e_1_3_2_43_1
  doi: 10.1016/j.est.2019.101057
– ident: e_1_3_2_24_1
  doi: 10.1016/j.ins.2009.12.010
– ident: e_1_3_2_47_1
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: e_1_3_2_68_1
  doi: 10.1109/4235.771163
– ident: e_1_3_2_26_1
  doi: 10.1016/j.engappai.2014.12.001
– ident: e_1_3_2_50_1
  doi: 10.1007/s12652-017-0600-7
– ident: e_1_3_2_3_1
  doi: 10.1007/s10614-017-9716-2
– ident: e_1_3_2_48_1
  doi: 10.1007/s00521-015-1870-7
– ident: e_1_3_2_8_1
  doi: 10.1080/0952813X.2017.1354082
– ident: e_1_3_2_64_1
  doi: 10.1109/59.466531
– ident: e_1_3_2_6_1
  doi: 10.1080/0952813X.2020.1836031
– ident: e_1_3_2_30_1
  doi: 10.1016/j.eswa.2018.10.050
– ident: e_1_3_2_62_1
  doi: 10.4156/ijact.vol4.issue3.34
– ident: e_1_3_2_63_1
  doi: 10.1109/4235.585893
– ident: e_1_3_2_66_1
  doi: 10.1109/TITS.2019.2918438
SSID ssj0001511
Score 2.3554144
Snippet Reactive power optimisation can effectively reduce active power loss and improve voltage quality, which is a great significance for power system planning. When...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 901
SubjectTerms Algorithms
Convergence
Distributed generation
dynamic adaptive inertia weights
Electric potential
Electric power loss
Harris hawk optimisation
improved logistic chaotic mapping
Optimization
Rank tests
Reactive power
reactive power optimisation problem
sine and cosine algorithm
Trigonometric functions
Voltage
Title A novel Hybrid Harris hawk sine cosine optimization algorithm for reactive power optimization problem
URI https://www.tandfonline.com/doi/abs/10.1080/0952813X.2022.2115144
https://www.proquest.com/docview/3074891664
Volume 36
WOSCitedRecordID wos000853391300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1362-3079
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511
  issn: 0952-813X
  databaseCode: TFW
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLZQxcBCOcVRkAfWlDh2Do8VoupUMRTRLXJ80Io2qdpQxL_nOXEqKoQ6wJREybMc-5328_cQuiOhUkRR5UkujcdiJTzhi8DL7AJkSMGJNaoqNhEPh8l4zJ9cNuHKpVXaGNrUQBGVrrbCLbJVkxF3D15BkBA6huguCLoQwYDRt4igYPqtaI76LxtdDK9IjbYHcg8kzRme31rZsk5b2KU_dHVlgPrtf-j6ETp03ifu1exyjPZ0foLaTWUH7AT9FOkezou1nuHBpz3RhQdiCcoAT8THG7aJ8lgW1aUAhTN3JzmxmL0Wy2k5mWP4HwzOaKVK8cLWYdv-0lWxOUPP_cfRw8BzBRk8CZFs6UkVcJWBDxEpxkTCtQ4SxSTcU0EI5yYWIkwkkSq2-6kUeIDbfThuQpaFWtBz1MqLXF8gHHEWKmpixmTClAoTowWEVtL3DRWR1peINRORSodWbotmzFLSgJq6oUztUKZuKC9Rd0O2qOE6dhHw77OcltU6iamLmqR0B22nYYnUST6Q-BbPh0QRu_pD09foAB6ZXbwmcQe1yuW7vkH7cl1OV8vbise_AJmS-Og
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8UTfQifkYUtQevQ7p2Hz0SI8GInDByW0o_1AiM4MT43_u6dQZiDAc9bcn2mq193-37PYQuSaAUUVR5kkvjsUgJTzSF7w1tAjKg4MQalTebiHq9eDDgi7Uw9liljaFNARSR62or3DYZXR6JuwK3wI8JHUB45_sNCGHA6rN1tBGArbX4-f3247c2hmekwNsDyQeasornt2GW7NMSeukPbZ2boHb1Pz5-F-04BxS3Co7ZQ2t6so-qZXMH7GT9AOkWnqRzPcKdT1vUhTtiBvoAP4uPV2zPymOZ5pcUdM7YFXNiMXpKZy_Z8xjDD2HwR3Ntiqe2Fdvym66RzSF6aN_0rzue68ngSQhmM08qn6shuBGhYkzEXGs_VkzCPRWEcG4iIYJYEqkiu6VKgQ243YrjJmDDQAt6hCqTdKKPEQ45CxQ1EWMyZkoFsdECoivZbBoqQq1riJUrkUgHWG77ZowSUuKauqlM7FQmbiprqPFNNi0QO1YR8MVlTrI8VWKKviYJXUFbL3kiccIPJE0L6UPCkJ38YegLtNXp33eT7m3v7hRtwyNmc9kkqqNKNnvXZ2hTzrOXt9l5zvBfX3_9Eg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4CbHwRhQKeGAN1LHz8IiAqghUMRTRLXL9gIqSVCEU8e85J05FhVAHmBIpOSux78539vn7EDolgVJEUeVJLo3HIiU80RK-N7ALkAGFINaokmwi6nbjfp_fu2rCN1dWaXNoUwFFlL7aGvdYmboi7hyiAj8mtA_Zne-fQQYDkz5bRMsQOodWyXvtx6kzhmekgtsDwweZ-hDPb83MTE8z4KU_nHU5A7U3_uHbN9G6Cz_xRaUvW2hBp9too6Z2wM7Sd5C-wGk20SPc-bRHunBH5OAN8LP4eMG2Uh7LrLxk4HFe3VFOLEZPWT4snl8x_A-GaLT0pXhsidhm33Q0NrvooX3du-x4jpHBk5DKFp5UPlcDCCJCxZiIudZ-rJiEeyoI4dxEQgSxJFJFdkOVghJwuxHHTcAGgRZ0Dy2lWar3EQ45CxQ1EWMyZkoFsdECcivZahkqQq0biNUDkUgHV25ZM0YJqVFNXVcmtisT15UNdDYVG1d4HfME-PdRTopyocRUrCYJnSPbrFUicaYPIi0L6EPCkB38oekTtHp_1U7ubrq3h2gNnjC7kE2iJloq8nd9hFbkpBi-5celun8BYzb7xA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+Hybrid+Harris+hawk+sine+cosine+optimization+algorithm+for+reactive+power+optimization+problem&rft.jtitle=Journal+of+experimental+%26+theoretical+artificial+intelligence&rft.au=Jiao%2C+Shangbin&rft.au=Wang%2C+Chen&rft.au=Gao%2C+Rui&rft.au=Li%2C+Yuxing&rft.date=2024-08-17&rft.issn=0952-813X&rft.eissn=1362-3079&rft.volume=36&rft.issue=6&rft.spage=901&rft.epage=937&rft_id=info:doi/10.1080%2F0952813X.2022.2115144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0952813X_2022_2115144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-813X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-813X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-813X&client=summon