A novel Hybrid Harris hawk sine cosine optimization algorithm for reactive power optimization problem
Reactive power optimisation can effectively reduce active power loss and improve voltage quality, which is a great significance for power system planning. When the reactive power optimisation problem is solved by Harris Hawk optimisation (HHO) algorithm, there are slow convergence and falling into l...
Saved in:
| Published in: | Journal of experimental & theoretical artificial intelligence Vol. 36; no. 6; pp. 901 - 937 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
17.08.2024
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0952-813X, 1362-3079 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Reactive power optimisation can effectively reduce active power loss and improve voltage quality, which is a great significance for power system planning. When the reactive power optimisation problem is solved by Harris Hawk optimisation (HHO) algorithm, there are slow convergence and falling into local optima. This is caused by the multiple random parameters in HHO's exploration phase. To solve this problem, the Improved Logistic Chaotic mapping, Sine and Cosine Algorithm (SCA), the dynamic adaptive inertia weights and greedy strategy are introduced; the aim is to speed up convergence, reduce blind spots and improve the search capability. The improved algorithm was tested on the classical 23 benchmark functions; Wilcoxon's signed-rank test and Friedman test were tested, the results show that the improved algorithm can obtain better performance. The improved algorithm is applied to the reactive power optimisation problem in distribution networks with distributed generators (DG). When the reactive power optimisation problem is solved by the improved algorithms HHO, WOA, CSO, CS and PSO, respectively, the improved algorithm can obtain the lowest active power loss. Compared with no optimisation, active power loss is reduced by 33.19%. Finally, the node voltage quality ensures the safe operation of the system. |
|---|---|
| AbstractList | Reactive power optimisation can effectively reduce active power loss and improve voltage quality, which is a great significance for power system planning. When the reactive power optimisation problem is solved by Harris Hawk optimisation (HHO) algorithm, there are slow convergence and falling into local optima. This is caused by the multiple random parameters in HHO's exploration phase. To solve this problem, the Improved Logistic Chaotic mapping, Sine and Cosine Algorithm (SCA), the dynamic adaptive inertia weights and greedy strategy are introduced; the aim is to speed up convergence, reduce blind spots and improve the search capability. The improved algorithm was tested on the classical 23 benchmark functions; Wilcoxon's signed-rank test and Friedman test were tested, the results show that the improved algorithm can obtain better performance. The improved algorithm is applied to the reactive power optimisation problem in distribution networks with distributed generators (DG). When the reactive power optimisation problem is solved by the improved algorithms HHO, WOA, CSO, CS and PSO, respectively, the improved algorithm can obtain the lowest active power loss. Compared with no optimisation, active power loss is reduced by 33.19%. Finally, the node voltage quality ensures the safe operation of the system. |
| Author | Gao, Rui Wang, Chen Li, Yuxing Jiao, Shangbin Zhang, Qing |
| Author_xml | – sequence: 1 givenname: Shangbin surname: Jiao fullname: Jiao, Shangbin organization: Xi'an University of Technology – sequence: 2 givenname: Chen orcidid: 0000-0002-2803-2632 surname: Wang fullname: Wang, Chen email: 1180311029@stu.xaut.edu.cn organization: Xi'an University of Technology – sequence: 3 givenname: Rui surname: Gao fullname: Gao, Rui organization: Baoji University of Arts and Sciences – sequence: 4 givenname: Yuxing surname: Li fullname: Li, Yuxing organization: Xi'an University of Technology – sequence: 5 givenname: Qing surname: Zhang fullname: Zhang, Qing organization: Xi'an University of Technology |
| BookMark | eNqFkE1LAzEQhoMoWD9-ghDwvDVfu93gxVLUCoIXBW8hm2Q1urups2lL_fVmrR70oKcZmOedGZ4DtNuFziF0QsmYkpKcEZmzkvLHMSOMjRmlORViB40oL1jGyUTuotHAZAO0jw76_oUQkig6Qm6Ku7ByDZ5vKvAWzzWA7_GzXr_i3ncOm_BZwiL61r_r6EOHdfMUwMfnFtcBMDhtol85vAhrBz_JBYSqce0R2qt107vjr3qIHq4u72fz7Pbu-mY2vc0M52XMjGXSViWVhRVCl9I5VlphUs81pVLWE63z0lBjJ0zkBbfcypwWaZCLKneaH6LT7d50923p-qhewhK6dFIlD6KUtChEos63lIHQ9-BqZXz8_DeC9o2iRA1e1bdXNXhVX15TOv-VXoBvNWz-zV1sc75L1lq9DtBYFfWmCVCD7oxPT_694gO1dZLS |
| CitedBy_id | crossref_primary_10_1007_s11831_024_10218_z crossref_primary_10_1038_s41598_025_13988_z |
| Cites_doi | 10.3233/JIFS-201075 10.1007/s00366-018-0620-8 10.1080/0952813X.2013.782348 10.1080/0952813X.2020.1725651 10.3390/app11125385 10.1007/s10614-017-9716-2 10.1016/j.ins.2021.11.052 10.1016/j.knosys.2015.12.022 10.1016/j.rser.2021.111295 10.1109/TCYB.2020.3033005 10.1007/s00366-011-0241-y 10.7667/j.issn.1674-3415.2012.07.006 10.1007/s11042-016-3907-z 10.22111/ieco.2020.35116.1296 10.22075/ijnaa.2020.4245 10.1016/j.knosys.2020.106461 10.1016/j.swevo.2018.02.017 10.1109/ACCESS.2019.2947308 10.1109/61.141868 10.1088/1742-6596/1480/1/012029 10.1016/j.epsr.2016.09.025 10.1007/s12559-021-09871-4 10.1007/s00521-021-05720-5 10.1142/S0219622021500176 10.1007/s00500-020-05469-4 10.1016/j.energy.2018.07.088 10.1016/j.chaos.2020.110409 10.1007/s00366-019-00828-8 10.1016/j.renene.2019.05.008 10.1080/0740817X.2010.532856 10.1016/j.energy.2020.117804 10.1016/j.energy.2020.118218 10.1109/TSMC.2020.3030792 10.1016/j.applthermaleng.2018.04.008 10.1109/ACCESS.2019.2921545 10.1007/s00500-020-05527-x 10.1109/CEC.2014.6900618 10.3390/app112311202 10.1016/j.applthermaleng.2018.11.122 10.1007/s10994-015-5522-z 10.1109/TIM.2021.3059500 10.1007/s00366-020-00996-y 10.1016/j.future.2019.02.028 10.1002/er.6891 10.1080/00207160108805080 10.1142/S0218348X21500122 10.1109/3477.484436 10.3139/120.111377 10.1007/s12530-019-09271-y 10.1007/s00366-019-00834-w 10.3390/su13010090 10.1126/science.220.4598.671 10.1007/978-3-319-11857-4_10 10.1007/s00521-021-05708-1 10.1016/j.future.2017.10.052 10.1016/j.est.2019.101057 10.1016/j.ins.2009.12.010 10.1016/j.advengsoft.2016.01.008 10.1109/4235.771163 10.1016/j.engappai.2014.12.001 10.1007/s12652-017-0600-7 10.1007/s00521-015-1870-7 10.1080/0952813X.2017.1354082 10.1109/59.466531 10.1080/0952813X.2020.1836031 10.1016/j.eswa.2018.10.050 10.4156/ijact.vol4.issue3.34 10.1109/4235.585893 10.1109/TITS.2019.2918438 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1080/0952813X.2022.2115144 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1362-3079 |
| EndPage | 937 |
| ExternalDocumentID | 10_1080_0952813X_2022_2115144 2115144 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: Open project of Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing grantid: No. 2020CP10 – fundername: Shaanxi Provincial Key Research and Development Project grantid: No. 2019GY-099 – fundername: National Natural Science Foundation of China grantid: No. 61871318 |
| GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 29K 2DF 30N 4.4 5GY 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABIVO ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACTIO ACUHS ADCVX ADGTB ADMLS ADXPE AEGXH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D-I DGEBU DKSSO EAP EBR EBS EBU ECS EDO EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z MK~ NA5 NX~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TH9 TNC TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX AEMOZ CITATION ADYSH JQ2 |
| ID | FETCH-LOGICAL-c338t-cd29db8196d44a89ee28d4c44a3a1199f7aa58c1cd724563d3d951699f54b5ea3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000853391300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-813X |
| IngestDate | Sat Jul 26 03:31:59 EDT 2025 Sat Nov 29 05:02:51 EST 2025 Tue Nov 18 20:56:48 EST 2025 Mon Oct 20 23:48:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-cd29db8196d44a89ee28d4c44a3a1199f7aa58c1cd724563d3d951699f54b5ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2803-2632 |
| PQID | 3074891664 |
| PQPubID | 53008 |
| PageCount | 37 |
| ParticipantIDs | proquest_journals_3074891664 informaworld_taylorfrancis_310_1080_0952813X_2022_2115144 crossref_citationtrail_10_1080_0952813X_2022_2115144 crossref_primary_10_1080_0952813X_2022_2115144 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-17 |
| PublicationDateYYYYMMDD | 2024-08-17 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Journal of experimental & theoretical artificial intelligence |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_2_28_1 e_1_3_2_49_1 e_1_3_2_20_1 e_1_3_2_41_1 e_1_3_2_66_1 e_1_3_2_22_1 e_1_3_2_43_1 e_1_3_2_64_1 e_1_3_2_24_1 e_1_3_2_45_1 e_1_3_2_26_1 e_1_3_2_47_1 e_1_3_2_68_1 e_1_3_2_62_1 e_1_3_2_60_1 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_7_1 Dréo J. (e_1_3_2_18_1) 2006 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_52_1 e_1_3_2_35_1 e_1_3_2_58_1 e_1_3_2_5_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_56_1 e_1_3_2_3_1 e_1_3_2_50_1 e_1_3_2_73_1 e_1_3_2_71_1 e_1_3_2_27_1 e_1_3_2_29_1 e_1_3_2_42_1 e_1_3_2_65_1 e_1_3_2_21_1 e_1_3_2_44_1 e_1_3_2_63_1 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_69_1 e_1_3_2_25_1 e_1_3_2_48_1 e_1_3_2_67_1 e_1_3_2_61_1 e_1_3_2_40_1 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_30_1 e_1_3_2_55_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_53_1 e_1_3_2_6_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_59_1 e_1_3_2_4_1 e_1_3_2_15_1 e_1_3_2_36_1 e_1_3_2_57_1 Demiar J. (e_1_3_2_12_1) 2006; 7 e_1_3_2_51_1 e_1_3_2_72_1 e_1_3_2_70_1 |
| References_xml | – ident: e_1_3_2_37_1 doi: 10.3233/JIFS-201075 – ident: e_1_3_2_27_1 doi: 10.1007/s00366-018-0620-8 – ident: e_1_3_2_58_1 doi: 10.1080/0952813X.2013.782348 – ident: e_1_3_2_29_1 doi: 10.1080/0952813X.2020.1725651 – ident: e_1_3_2_10_1 doi: 10.3390/app11125385 – ident: e_1_3_2_2_1 doi: 10.1007/s10614-017-9716-2 – ident: e_1_3_2_15_1 doi: 10.1016/j.ins.2021.11.052 – ident: e_1_3_2_46_1 doi: 10.1016/j.knosys.2015.12.022 – ident: e_1_3_2_67_1 doi: 10.1016/j.rser.2021.111295 – ident: e_1_3_2_65_1 doi: 10.1109/TCYB.2020.3033005 – ident: e_1_3_2_23_1 doi: 10.1007/s00366-011-0241-y – ident: e_1_3_2_9_1 doi: 10.7667/j.issn.1674-3415.2012.07.006 – volume: 7 start-page: 1 issue: 2006 year: 2006 ident: e_1_3_2_12_1 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – ident: e_1_3_2_22_1 doi: 10.1007/s11042-016-3907-z – ident: e_1_3_2_38_1 doi: 10.22111/ieco.2020.35116.1296 – ident: e_1_3_2_36_1 doi: 10.22075/ijnaa.2020.4245 – ident: e_1_3_2_21_1 doi: 10.1016/j.knosys.2020.106461 – ident: e_1_3_2_73_1 doi: 10.1016/j.swevo.2018.02.017 – ident: e_1_3_2_19_1 doi: 10.1109/ACCESS.2019.2947308 – ident: e_1_3_2_28_1 doi: 10.1109/61.141868 – ident: e_1_3_2_56_1 doi: 10.1088/1742-6596/1480/1/012029 – ident: e_1_3_2_53_1 doi: 10.1016/j.epsr.2016.09.025 – ident: e_1_3_2_71_1 doi: 10.1007/s12559-021-09871-4 – ident: e_1_3_2_4_1 doi: 10.1007/s00521-021-05720-5 – ident: e_1_3_2_54_1 doi: 10.1142/S0219622021500176 – ident: e_1_3_2_20_1 doi: 10.1007/s00500-020-05469-4 – ident: e_1_3_2_25_1 doi: 10.1016/j.energy.2018.07.088 – ident: e_1_3_2_34_1 doi: 10.1016/j.chaos.2020.110409 – ident: e_1_3_2_52_1 doi: 10.1007/s00366-019-00828-8 – ident: e_1_3_2_7_1 doi: 10.1016/j.renene.2019.05.008 – ident: e_1_3_2_69_1 doi: 10.1080/0740817X.2010.532856 – ident: e_1_3_2_33_1 doi: 10.1016/j.energy.2020.117804 – ident: e_1_3_2_55_1 doi: 10.1016/j.energy.2020.118218 – ident: e_1_3_2_14_1 doi: 10.1109/TSMC.2020.3030792 – volume-title: Metaheuristics for hard optimization: Methods and case studies year: 2006 ident: e_1_3_2_18_1 – ident: e_1_3_2_40_1 doi: 10.1016/j.applthermaleng.2018.04.008 – ident: e_1_3_2_5_1 doi: 10.1109/ACCESS.2019.2921545 – ident: e_1_3_2_13_1 doi: 10.1007/s00500-020-05527-x – ident: e_1_3_2_39_1 doi: 10.1109/CEC.2014.6900618 – ident: e_1_3_2_57_1 doi: 10.3390/app112311202 – ident: e_1_3_2_59_1 doi: 10.1016/j.applthermaleng.2018.11.122 – ident: e_1_3_2_61_1 doi: 10.1007/s10994-015-5522-z – ident: e_1_3_2_72_1 doi: 10.1109/TIM.2021.3059500 – ident: e_1_3_2_31_1 doi: 10.1007/s00366-020-00996-y – ident: e_1_3_2_32_1 doi: 10.1016/j.future.2019.02.028 – ident: e_1_3_2_44_1 doi: 10.1002/er.6891 – ident: e_1_3_2_16_1 doi: 10.1080/00207160108805080 – ident: e_1_3_2_35_1 doi: 10.1142/S0218348X21500122 – ident: e_1_3_2_17_1 doi: 10.1109/3477.484436 – ident: e_1_3_2_70_1 doi: 10.3139/120.111377 – ident: e_1_3_2_49_1 doi: 10.1007/s12530-019-09271-y – ident: e_1_3_2_51_1 doi: 10.1007/s00366-019-00834-w – ident: e_1_3_2_11_1 doi: 10.3390/su13010090 – ident: e_1_3_2_41_1 doi: 10.1126/science.220.4598.671 – ident: e_1_3_2_45_1 doi: 10.1007/978-3-319-11857-4_10 – ident: e_1_3_2_60_1 doi: 10.1007/s00521-021-05708-1 – ident: e_1_3_2_42_1 doi: 10.1016/j.future.2017.10.052 – ident: e_1_3_2_43_1 doi: 10.1016/j.est.2019.101057 – ident: e_1_3_2_24_1 doi: 10.1016/j.ins.2009.12.010 – ident: e_1_3_2_47_1 doi: 10.1016/j.advengsoft.2016.01.008 – ident: e_1_3_2_68_1 doi: 10.1109/4235.771163 – ident: e_1_3_2_26_1 doi: 10.1016/j.engappai.2014.12.001 – ident: e_1_3_2_50_1 doi: 10.1007/s12652-017-0600-7 – ident: e_1_3_2_3_1 doi: 10.1007/s10614-017-9716-2 – ident: e_1_3_2_48_1 doi: 10.1007/s00521-015-1870-7 – ident: e_1_3_2_8_1 doi: 10.1080/0952813X.2017.1354082 – ident: e_1_3_2_64_1 doi: 10.1109/59.466531 – ident: e_1_3_2_6_1 doi: 10.1080/0952813X.2020.1836031 – ident: e_1_3_2_30_1 doi: 10.1016/j.eswa.2018.10.050 – ident: e_1_3_2_62_1 doi: 10.4156/ijact.vol4.issue3.34 – ident: e_1_3_2_63_1 doi: 10.1109/4235.585893 – ident: e_1_3_2_66_1 doi: 10.1109/TITS.2019.2918438 |
| SSID | ssj0001511 |
| Score | 2.3554144 |
| Snippet | Reactive power optimisation can effectively reduce active power loss and improve voltage quality, which is a great significance for power system planning. When... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 901 |
| SubjectTerms | Algorithms Convergence Distributed generation dynamic adaptive inertia weights Electric potential Electric power loss Harris hawk optimisation improved logistic chaotic mapping Optimization Rank tests Reactive power reactive power optimisation problem sine and cosine algorithm Trigonometric functions Voltage |
| Title | A novel Hybrid Harris hawk sine cosine optimization algorithm for reactive power optimization problem |
| URI | https://www.tandfonline.com/doi/abs/10.1080/0952813X.2022.2115144 https://www.proquest.com/docview/3074891664 |
| Volume | 36 |
| WOSCitedRecordID | wos000853391300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1362-3079 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511 issn: 0952-813X databaseCode: TFW dateStart: 19890101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLZQxcBCOcVRkAfWlDh2Do8VoupUMRTRLXJ80Io2qdpQxL_nOXEqKoQ6wJREybMc-5328_cQuiOhUkRR5UkujcdiJTzhi8DL7AJkSMGJNaoqNhEPh8l4zJ9cNuHKpVXaGNrUQBGVrrbCLbJVkxF3D15BkBA6huguCLoQwYDRt4igYPqtaI76LxtdDK9IjbYHcg8kzRme31rZsk5b2KU_dHVlgPrtf-j6ETp03ifu1exyjPZ0foLaTWUH7AT9FOkezou1nuHBpz3RhQdiCcoAT8THG7aJ8lgW1aUAhTN3JzmxmL0Wy2k5mWP4HwzOaKVK8cLWYdv-0lWxOUPP_cfRw8BzBRk8CZFs6UkVcJWBDxEpxkTCtQ4SxSTcU0EI5yYWIkwkkSq2-6kUeIDbfThuQpaFWtBz1MqLXF8gHHEWKmpixmTClAoTowWEVtL3DRWR1peINRORSodWbotmzFLSgJq6oUztUKZuKC9Rd0O2qOE6dhHw77OcltU6iamLmqR0B22nYYnUST6Q-BbPh0QRu_pD09foAB6ZXbwmcQe1yuW7vkH7cl1OV8vbise_AJmS-Og |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8UTfQifkYUtQevQ7p2Hz0SI8GInDByW0o_1AiM4MT43_u6dQZiDAc9bcn2mq193-37PYQuSaAUUVR5kkvjsUgJTzSF7w1tAjKg4MQalTebiHq9eDDgi7Uw9liljaFNARSR62or3DYZXR6JuwK3wI8JHUB45_sNCGHA6rN1tBGArbX4-f3247c2hmekwNsDyQeasornt2GW7NMSeukPbZ2boHb1Pz5-F-04BxS3Co7ZQ2t6so-qZXMH7GT9AOkWnqRzPcKdT1vUhTtiBvoAP4uPV2zPymOZ5pcUdM7YFXNiMXpKZy_Z8xjDD2HwR3Ntiqe2Fdvym66RzSF6aN_0rzue68ngSQhmM08qn6shuBGhYkzEXGs_VkzCPRWEcG4iIYJYEqkiu6VKgQ243YrjJmDDQAt6hCqTdKKPEQ45CxQ1EWMyZkoFsdECoivZbBoqQq1riJUrkUgHWG77ZowSUuKauqlM7FQmbiprqPFNNi0QO1YR8MVlTrI8VWKKviYJXUFbL3kiccIPJE0L6UPCkJ38YegLtNXp33eT7m3v7hRtwyNmc9kkqqNKNnvXZ2hTzrOXt9l5zvBfX3_9Eg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4CbHwRhQKeGAN1LHz8IiAqghUMRTRLXL9gIqSVCEU8e85J05FhVAHmBIpOSux78539vn7EDolgVJEUeVJLo3HIiU80RK-N7ALkAGFINaokmwi6nbjfp_fu2rCN1dWaXNoUwFFlL7aGvdYmboi7hyiAj8mtA_Zne-fQQYDkz5bRMsQOodWyXvtx6kzhmekgtsDwweZ-hDPb83MTE8z4KU_nHU5A7U3_uHbN9G6Cz_xRaUvW2hBp9too6Z2wM7Sd5C-wGk20SPc-bRHunBH5OAN8LP4eMG2Uh7LrLxk4HFe3VFOLEZPWT4snl8x_A-GaLT0pXhsidhm33Q0NrvooX3du-x4jpHBk5DKFp5UPlcDCCJCxZiIudZ-rJiEeyoI4dxEQgSxJFJFdkOVghJwuxHHTcAGgRZ0Dy2lWar3EQ45CxQ1EWMyZkoFsdECcivZahkqQq0biNUDkUgHV25ZM0YJqVFNXVcmtisT15UNdDYVG1d4HfME-PdRTopyocRUrCYJnSPbrFUicaYPIi0L6EPCkB38oekTtHp_1U7ubrq3h2gNnjC7kE2iJloq8nd9hFbkpBi-5celun8BYzb7xA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+Hybrid+Harris+hawk+sine+cosine+optimization+algorithm+for+reactive+power+optimization+problem&rft.jtitle=Journal+of+experimental+%26+theoretical+artificial+intelligence&rft.au=Jiao%2C+Shangbin&rft.au=Wang%2C+Chen&rft.au=Gao%2C+Rui&rft.au=Li%2C+Yuxing&rft.date=2024-08-17&rft.issn=0952-813X&rft.eissn=1362-3079&rft.volume=36&rft.issue=6&rft.spage=901&rft.epage=937&rft_id=info:doi/10.1080%2F0952813X.2022.2115144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0952813X_2022_2115144 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-813X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-813X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-813X&client=summon |