Multigrid algorithm based on hybrid smoothers for variational and selective segmentation models
Automatic segmentation of an image to identify all meaningful parts is one of the most challenging as well as useful tasks in a number of application areas. This is widely studied. Selective segmentation, less studied, aims to use limited user-specified information to extract one or more interesting...
Uložené v:
| Vydané v: | International journal of computer mathematics Ročník 96; číslo 8; s. 1623 - 1647 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Abingdon
Taylor & Francis
03.08.2019
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0020-7160, 1029-0265 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Automatic segmentation of an image to identify all meaningful parts is one of the most challenging as well as useful tasks in a number of application areas. This is widely studied. Selective segmentation, less studied, aims to use limited user-specified information to extract one or more interesting objects (instead of all objects). Constructing a fast solver remains a challenge for both classes of model. However, our primary concern is on selective segmentation. In this work, we develop an effective multigrid algorithm, based on a new non-standard smoother to deal with non-smooth coefficients, to solve the underlying partial differential equations of a class of variational segmentation models in the level-set formulation. For such models, non-smoothness (or jumps) is typical as segmentation is only possible if edges (jumps) are present. In comparison with previous multigrid methods which were shown to produce an acceptable mean smoothing rate for related models, the new algorithm can ensure a small and global smoothing rate that is a sufficient condition for convergence. Our rate analysis is by local Fourier analysis and, with it, we design the corresponding iterative solver, improving on an ineffective line smoother. Numerical tests show that the new algorithm outperforms multigrid methods based on competing smoothers. |
|---|---|
| AbstractList | Automatic segmentation of an image to identify all meaningful parts is one of the most challenging as well as useful tasks in a number of application areas. This is widely studied. Selective segmentation, less studied, aims to use limited user-specified information to extract one or more interesting objects (instead of all objects). Constructing a fast solver remains a challenge for both classes of model. However, our primary concern is on selective segmentation. In this work, we develop an effective multigrid algorithm, based on a new non-standard smoother to deal with non-smooth coefficients, to solve the underlying partial differential equations of a class of variational segmentation models in the level-set formulation. For such models, non-smoothness (or jumps) is typical as segmentation is only possible if edges (jumps) are present. In comparison with previous multigrid methods which were shown to produce an acceptable mean smoothing rate for related models, the new algorithm can ensure a small and global smoothing rate that is a sufficient condition for convergence. Our rate analysis is by local Fourier analysis and, with it, we design the corresponding iterative solver, improving on an ineffective line smoother. Numerical tests show that the new algorithm outperforms multigrid methods based on competing smoothers. |
| Author | Roberts, Michael Chen, Ke Irion, Klaus L. |
| Author_xml | – sequence: 1 givenname: Michael surname: Roberts fullname: Roberts, Michael organization: Centre for Mathematical Imaging Techniques, Department of Mathematical Sciences, The University of Liverpool – sequence: 2 givenname: Ke surname: Chen fullname: Chen, Ke email: k.chen@liverpool.ac.uk organization: Centre for Mathematical Imaging Techniques, Department of Mathematical Sciences, The University of Liverpool – sequence: 3 givenname: Klaus L. surname: Irion fullname: Irion, Klaus L. organization: Department of Radiology, Manchester University NHS Foundation Trust |
| BookMark | eNqFkE9r2zAYxsXIYGm2jzAw7OzslSzLFru0hLYrpOyyncUbWU4UZCuTlJZ8-8pLetmhPb0vPH94-F2R2ehHQ8hXCksKLXwHYNBQAUsGtF1SLnnLmg9kToHJEpioZ2Q-ecrJ9IlcxbgHgFY2Yk7U49Eluw22K9BtfbBpNxQbjKYr_FjsTptJiYP3aWdCLHofiicMFpP1I7oCx6waZ3SyTyZ_28GM6Z9YDL4zLn4mH3t00Xy53AX5c3f7e_WzXP-6f1jdrEtdVW0qtexkY4ToOAJnQudtKDdG1LQRklNeC-w7RMhKX9UbjVzrhnNgtZSV1n21IN_OvYfg_x5NTGrvjyFPjIqxjKeqKwbZ9ePs0sHHGEyvtD3PTQGtUxTURFS9ElUTUXUhmtP1f-lDsAOG07u563POjpnfgM8-uE4lPDkf-oCjtlFVb1e8AHGSkCI |
| CitedBy_id | crossref_primary_10_1016_j_sigpro_2021_108292 crossref_primary_10_1109_ACCESS_2022_3221748 crossref_primary_10_1137_24M1641002 crossref_primary_10_1080_00207160_2019_1674290 |
| Cites_doi | 10.1016/0021-9991(88)90002-2 10.1023/A:1020874308076 10.1137/0908025 10.1109/TIP.2009.2014260 10.1137/080737903 10.1016/j.jcp.2016.07.031 10.1007/s11075-008-9174-y 10.1109/TIP.2012.2191566 10.3934/ipi.2011.5.323 10.4208/cicp.190111.210611a 10.1023/A:1007979827043 10.4208/eajam.090312.080412a 10.4208/cicp.2009.09.026 10.1080/00207160.2011.632410 10.1007/BF00133570 10.1137/1.9781611970753 10.1016/0021-9991(86)90008-2 10.1137/040615286 10.1109/83.902291 10.1007/s00211-011-0362-7 10.1109/34.87344 10.1002/nla.1856 10.1090/S0025-5718-1977-0431719-X 10.1137/0902035 10.1002/cpa.3160420503 10.4310/CMS.2015.v13.n6.a5 10.1017/CBO9780511543258 10.1007/s11075-004-3627-8 10.1109/34.295913 10.1117/12.499473 10.1260/1748-3018.7.4.509 10.1016/j.apnum.2016.02.006 |
| ContentType | Journal Article |
| Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 2018 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1080/00207160.2018.1494827 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1029-0265 |
| EndPage | 1647 |
| ExternalDocumentID | 10_1080_00207160_2018_1494827 1494827 |
| Genre | Article |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/K036939/1; EP/N014499/1 funderid: 10.13039/501100000266 |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABUFD ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACNCT ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AI. AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EJD EMK EPL EST ESX E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MK~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS TWF UPT UT5 UU3 VH1 WH7 ZGOLN ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c338t-c9d97e66d4a0426c976a9be65176941456afdaa06c9f35bca4cc744025993ccf3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468295900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-7160 |
| IngestDate | Wed Aug 13 09:47:56 EDT 2025 Sat Nov 29 02:21:38 EST 2025 Tue Nov 18 21:50:53 EST 2025 Mon Oct 20 23:49:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-c9d97e66d4a0426c976a9be65176941456afdaa06c9f35bca4cc744025993ccf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2220735320 |
| PQPubID | 52924 |
| PageCount | 25 |
| ParticipantIDs | crossref_citationtrail_10_1080_00207160_2018_1494827 crossref_primary_10_1080_00207160_2018_1494827 proquest_journals_2220735320 informaworld_taylorfrancis_310_1080_00207160_2018_1494827 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-03 |
| PublicationDateYYYYMMDD | 2019-08-03 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of computer mathematics |
| PublicationYear | 2019 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0011 CIT0033 Golub G.H. (CIT0018) 2012; 3 Trottenberg U. (CIT0034) 2001 Badshah N. (CIT0005) 2010; 7 CIT0014 CIT0036 CIT0035 CIT0016 CIT0015 CIT0037 CIT0017 CIT0039 Klodt M. (CIT0022) 2013; 0 CIT0019 CIT0040 CIT0021 CIT0020 CIT0001 CIT0023 Badshah N. (CIT0003) 2008; 4 Wan W.L. (CIT0038) 2000 CIT0002 CIT0024 CIT0027 CIT0004 CIT0026 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – volume-title: Multigrid year: 2001 ident: CIT0034 – ident: CIT0029 doi: 10.1016/0021-9991(88)90002-2 – ident: CIT0036 doi: 10.1023/A:1020874308076 – ident: CIT0008 doi: 10.1137/0908025 – ident: CIT0004 doi: 10.1109/TIP.2009.2014260 – ident: CIT0011 doi: 10.1137/080737903 – ident: CIT0024 doi: 10.1016/j.jcp.2016.07.031 – start-page: 323 year: 2000 ident: CIT0038 publication-title: J. Comput. Appl. Math. – ident: CIT0023 doi: 10.1007/s11075-008-9174-y – ident: CIT0028 doi: 10.1109/TIP.2012.2191566 – ident: CIT0017 doi: 10.3934/ipi.2011.5.323 – ident: CIT0030 doi: 10.4208/cicp.190111.210611a – ident: CIT0012 doi: 10.1023/A:1007979827043 – ident: CIT0006 doi: 10.4208/eajam.090312.080412a – volume: 7 start-page: 759 issue: 4 year: 2010 ident: CIT0005 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.2009.09.026 – ident: CIT0039 doi: 10.1080/00207160.2011.632410 – ident: CIT0021 doi: 10.1007/BF00133570 – ident: CIT0010 doi: 10.1137/1.9781611970753 – ident: CIT0035 doi: 10.1016/0021-9991(86)90008-2 – ident: CIT0014 doi: 10.1137/040615286 – volume: 0 start-page: 1 year: 2013 ident: CIT0022 publication-title: Adv. Top. Comput. Vision – ident: CIT0015 doi: 10.1109/83.902291 – ident: CIT0027 doi: 10.1007/s00211-011-0362-7 – ident: CIT0037 doi: 10.1109/34.87344 – ident: CIT0040 doi: 10.1002/nla.1856 – ident: CIT0009 doi: 10.1090/S0025-5718-1977-0431719-X – ident: CIT0002 doi: 10.1137/0902035 – ident: CIT0026 doi: 10.1002/cpa.3160420503 – volume: 3 volume-title: Matrix computations year: 2012 ident: CIT0018 – ident: CIT0033 doi: 10.4310/CMS.2015.v13.n6.a5 – ident: CIT0016 doi: 10.1017/CBO9780511543258 – ident: CIT0019 doi: 10.1007/s11075-004-3627-8 – ident: CIT0001 doi: 10.1109/34.295913 – ident: CIT0020 doi: 10.1117/12.499473 – ident: CIT0031 doi: 10.1260/1748-3018.7.4.509 – ident: CIT0032 doi: 10.1016/j.apnum.2016.02.006 – volume: 4 start-page: 294 issue: 2 year: 2008 ident: CIT0003 publication-title: Commun. Comput. Phys. |
| SSID | ssj0008976 |
| Score | 2.191098 |
| Snippet | Automatic segmentation of an image to identify all meaningful parts is one of the most challenging as well as useful tasks in a number of application areas.... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1623 |
| SubjectTerms | Algorithms fast solvers Fourier analysis Image segmentation Iterative methods jump coefficients local fourier analysis Mathematical models multigrid Multigrid methods Object recognition Partial differential equations Smoothing Smoothness |
| Title | Multigrid algorithm based on hybrid smoothers for variational and selective segmentation models |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00207160.2018.1494827 https://www.proquest.com/docview/2220735320 |
| Volume | 96 |
| WOSCitedRecordID | wos000468295900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1029-0265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008976 issn: 0020-7160 databaseCode: TFW dateStart: 19640101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPHjxLVar5OB1pW32laOIxVPxULG3kMxu2kK7K5u14L93ks0Wi0gPettlmRAmmW9mlpn5CLlT6BQY6DSQEaarYQqDgA-HEEQx06B0pIeRcmQTyXicTqf8xVcTGl9WaXNo3QyKcFhtjVsq01bE2Q5udIxx3xZmpWjq3I6yRBTGyN4W9U1GbxssTrmjl7MSgRVpe3h-W2XLO23NLv2B1c4BjY7-YevH5NBHn_ShuS4nZC8vTslRy-xAvaGfEeH6cmfVIqNyOSurRT1fUevwMloWdP5p27yoWZWufctQ3D9dY9LtfyxS3B41jmAHsRSfZivf4VRQx7xjzsnr6Gny-Bx4KoYAMIetA-AZT_I4zkJpky5AtUqu8jgaJLYTFqMwqTMp-_hFs0iBDAHs6EFMrjgD0OyCdIqyyC8J7WvQOaQc0SULMV9KGYMEsUXHEVdS6S4J2yMQ4OeUW7qMpRhsxpk2ShRWicIrsUvuN2LvzaCOXQL8-_mK2v0h0Q2diWA7ZHvtZRDe5o3ASAvx0hJtXP1h6WtygK_c1RiyHunU1Ud-Q_ZhXS9Mdetu9xe2WPVq |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA46BX1x_sTp1Dz4WtmWtmseRRwT554m7i2k12YbuE7WOvC_9y5tx4bIHvStEC6kl9xdvnB3H2O3IQYFASZwtIdw1Q2g6chWCxzPFwZC45mWF1qyiXa_HwyHcrUWhtIqCUObvFGE9dVk3PQYXabEUQk3Rka_QZlZAdq6pF6W22yH2OkIgA06b0tvHEhLMEciDsmUVTy_TbMWn9a6l_7w1jYEdar_sfhDdlBcQPl9fmKO2FacHLNqSe7AC1s_YcqW5o7mk4jr99FsPsnGU04xL-KzhI-_qNKLp9OZreBKOf4AXyDuLt4WOa6Pp5ZjB90pfo2mRZFTwi35TnrKXjuPg4euU7AxOIAwNnNARrId-37kasJdgHrVMox9r9mmYli8iGkTad3AESO8ELQLQN0HEV9JAWDEGasksyQ-Z7xhwMQQSHQwkYuQKRAC2uhejO_JUIemxtxyDxQUrcqJMeNdNZcdTXMlKlKiKpRYY3dLsY-8V8cmAbm6wSqzjyQmZzRRYoNsvTwNqjD7VOFlC10mcW1c_GHqG7bXHbz0VO-p_3zJ9nFI2pRDUWeVbP4ZX7FdWGSTdH5tj_o3NO_5jQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aRbxYn1itmoPXlbbZV46iFkUpPVTsLWRnN22h3S3dteC_d5LNFouIB70FwoQwmWeYmY-Q6widAgMVOtLDdNUNoe3wTgccz2cKIuWpjhcZsImg1wuHQ9631YS5LavUObQqB0UYW62Vex6rqiJOd3CjY_RbujArRFXnepTlJtnC0NnTgj3ovq2MccgNvpwmcTRN1cTz0zFr7mlteOk3Y208ULf-D3ffJ3s2_KS3pbwckI0kPST1CtqBWk0_IsI05o4Wk5jK6ShbTIrxjGqPF9MspeMP3edF81lm-rdyivenS8y67c8ixevR3CDsoDHF1WhmW5xSaqB38mPy2n0Y3D06FovBAUxiCwd4zIPE92NX6qwLkK2SR4nvtQPdCothmFSxlC3cUcyLQLoAevYgZlecASh2QmpplianhLYUqARCjuYldjFhChmDAI2LwteLZKQaxK2eQIAdVK7xMqaivZpnWjJRaCYKy8QGuVmRzctJHb8R8K_vKwrzRaJKPBPBfqFtVsIgrNLnAkMtNJgaaePsD0dfkZ3-fVe8PPWez8ku7nBTb8iapFYs3pMLsg3LYpIvLo2gfwJCyPg_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multigrid+algorithm+based+on+hybrid+smoothers+for+variational+and+selective+segmentation+models&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Roberts%2C+Michael&rft.au=Chen%2C+Ke&rft.au=Irion%2C+Klaus+L.&rft.date=2019-08-03&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=96&rft.issue=8&rft.spage=1623&rft.epage=1647&rft_id=info:doi/10.1080%2F00207160.2018.1494827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207160_2018_1494827 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon |