Multigrid algorithm based on hybrid smoothers for variational and selective segmentation models

Automatic segmentation of an image to identify all meaningful parts is one of the most challenging as well as useful tasks in a number of application areas. This is widely studied. Selective segmentation, less studied, aims to use limited user-specified information to extract one or more interesting...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computer mathematics Ročník 96; číslo 8; s. 1623 - 1647
Hlavní autori: Roberts, Michael, Chen, Ke, Irion, Klaus L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 03.08.2019
Taylor & Francis Ltd
Predmet:
ISSN:0020-7160, 1029-0265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Automatic segmentation of an image to identify all meaningful parts is one of the most challenging as well as useful tasks in a number of application areas. This is widely studied. Selective segmentation, less studied, aims to use limited user-specified information to extract one or more interesting objects (instead of all objects). Constructing a fast solver remains a challenge for both classes of model. However, our primary concern is on selective segmentation. In this work, we develop an effective multigrid algorithm, based on a new non-standard smoother to deal with non-smooth coefficients, to solve the underlying partial differential equations of a class of variational segmentation models in the level-set formulation. For such models, non-smoothness (or jumps) is typical as segmentation is only possible if edges (jumps) are present. In comparison with previous multigrid methods which were shown to produce an acceptable mean smoothing rate for related models, the new algorithm can ensure a small and global smoothing rate that is a sufficient condition for convergence. Our rate analysis is by local Fourier analysis and, with it, we design the corresponding iterative solver, improving on an ineffective line smoother. Numerical tests show that the new algorithm outperforms multigrid methods based on competing smoothers.
AbstractList Automatic segmentation of an image to identify all meaningful parts is one of the most challenging as well as useful tasks in a number of application areas. This is widely studied. Selective segmentation, less studied, aims to use limited user-specified information to extract one or more interesting objects (instead of all objects). Constructing a fast solver remains a challenge for both classes of model. However, our primary concern is on selective segmentation. In this work, we develop an effective multigrid algorithm, based on a new non-standard smoother to deal with non-smooth coefficients, to solve the underlying partial differential equations of a class of variational segmentation models in the level-set formulation. For such models, non-smoothness (or jumps) is typical as segmentation is only possible if edges (jumps) are present. In comparison with previous multigrid methods which were shown to produce an acceptable mean smoothing rate for related models, the new algorithm can ensure a small and global smoothing rate that is a sufficient condition for convergence. Our rate analysis is by local Fourier analysis and, with it, we design the corresponding iterative solver, improving on an ineffective line smoother. Numerical tests show that the new algorithm outperforms multigrid methods based on competing smoothers.
Author Roberts, Michael
Chen, Ke
Irion, Klaus L.
Author_xml – sequence: 1
  givenname: Michael
  surname: Roberts
  fullname: Roberts, Michael
  organization: Centre for Mathematical Imaging Techniques, Department of Mathematical Sciences, The University of Liverpool
– sequence: 2
  givenname: Ke
  surname: Chen
  fullname: Chen, Ke
  email: k.chen@liverpool.ac.uk
  organization: Centre for Mathematical Imaging Techniques, Department of Mathematical Sciences, The University of Liverpool
– sequence: 3
  givenname: Klaus L.
  surname: Irion
  fullname: Irion, Klaus L.
  organization: Department of Radiology, Manchester University NHS Foundation Trust
BookMark eNqFkE9r2zAYxsXIYGm2jzAw7OzslSzLFru0hLYrpOyyncUbWU4UZCuTlJZ8-8pLetmhPb0vPH94-F2R2ehHQ8hXCksKLXwHYNBQAUsGtF1SLnnLmg9kToHJEpioZ2Q-ecrJ9IlcxbgHgFY2Yk7U49Eluw22K9BtfbBpNxQbjKYr_FjsTptJiYP3aWdCLHofiicMFpP1I7oCx6waZ3SyTyZ_28GM6Z9YDL4zLn4mH3t00Xy53AX5c3f7e_WzXP-6f1jdrEtdVW0qtexkY4ToOAJnQudtKDdG1LQRklNeC-w7RMhKX9UbjVzrhnNgtZSV1n21IN_OvYfg_x5NTGrvjyFPjIqxjKeqKwbZ9ePs0sHHGEyvtD3PTQGtUxTURFS9ElUTUXUhmtP1f-lDsAOG07u563POjpnfgM8-uE4lPDkf-oCjtlFVb1e8AHGSkCI
CitedBy_id crossref_primary_10_1016_j_sigpro_2021_108292
crossref_primary_10_1109_ACCESS_2022_3221748
crossref_primary_10_1137_24M1641002
crossref_primary_10_1080_00207160_2019_1674290
Cites_doi 10.1016/0021-9991(88)90002-2
10.1023/A:1020874308076
10.1137/0908025
10.1109/TIP.2009.2014260
10.1137/080737903
10.1016/j.jcp.2016.07.031
10.1007/s11075-008-9174-y
10.1109/TIP.2012.2191566
10.3934/ipi.2011.5.323
10.4208/cicp.190111.210611a
10.1023/A:1007979827043
10.4208/eajam.090312.080412a
10.4208/cicp.2009.09.026
10.1080/00207160.2011.632410
10.1007/BF00133570
10.1137/1.9781611970753
10.1016/0021-9991(86)90008-2
10.1137/040615286
10.1109/83.902291
10.1007/s00211-011-0362-7
10.1109/34.87344
10.1002/nla.1856
10.1090/S0025-5718-1977-0431719-X
10.1137/0902035
10.1002/cpa.3160420503
10.4310/CMS.2015.v13.n6.a5
10.1017/CBO9780511543258
10.1007/s11075-004-3627-8
10.1109/34.295913
10.1117/12.499473
10.1260/1748-3018.7.4.509
10.1016/j.apnum.2016.02.006
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
2018 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
– notice: 2018 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00207160.2018.1494827
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1029-0265
EndPage 1647
ExternalDocumentID 10_1080_00207160_2018_1494827
1494827
Genre Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/K036939/1; EP/N014499/1
  funderid: 10.13039/501100000266
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AI.
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MK~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-c9d97e66d4a0426c976a9be65176941456afdaa06c9f35bca4cc744025993ccf3
IEDL.DBID TFW
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468295900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7160
IngestDate Wed Aug 13 09:47:56 EDT 2025
Sat Nov 29 02:21:38 EST 2025
Tue Nov 18 21:50:53 EST 2025
Mon Oct 20 23:49:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-c9d97e66d4a0426c976a9be65176941456afdaa06c9f35bca4cc744025993ccf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2220735320
PQPubID 52924
PageCount 25
ParticipantIDs crossref_citationtrail_10_1080_00207160_2018_1494827
crossref_primary_10_1080_00207160_2018_1494827
proquest_journals_2220735320
informaworld_taylorfrancis_310_1080_00207160_2018_1494827
PublicationCentury 2000
PublicationDate 2019-08-03
PublicationDateYYYYMMDD 2019-08-03
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-03
  day: 03
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of computer mathematics
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0011
CIT0033
Golub G.H. (CIT0018) 2012; 3
Trottenberg U. (CIT0034) 2001
Badshah N. (CIT0005) 2010; 7
CIT0014
CIT0036
CIT0035
CIT0016
CIT0015
CIT0037
CIT0017
CIT0039
Klodt M. (CIT0022) 2013; 0
CIT0019
CIT0040
CIT0021
CIT0020
CIT0001
CIT0023
Badshah N. (CIT0003) 2008; 4
Wan W.L. (CIT0038) 2000
CIT0002
CIT0024
CIT0027
CIT0004
CIT0026
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – volume-title: Multigrid
  year: 2001
  ident: CIT0034
– ident: CIT0029
  doi: 10.1016/0021-9991(88)90002-2
– ident: CIT0036
  doi: 10.1023/A:1020874308076
– ident: CIT0008
  doi: 10.1137/0908025
– ident: CIT0004
  doi: 10.1109/TIP.2009.2014260
– ident: CIT0011
  doi: 10.1137/080737903
– ident: CIT0024
  doi: 10.1016/j.jcp.2016.07.031
– start-page: 323
  year: 2000
  ident: CIT0038
  publication-title: J. Comput. Appl. Math.
– ident: CIT0023
  doi: 10.1007/s11075-008-9174-y
– ident: CIT0028
  doi: 10.1109/TIP.2012.2191566
– ident: CIT0017
  doi: 10.3934/ipi.2011.5.323
– ident: CIT0030
  doi: 10.4208/cicp.190111.210611a
– ident: CIT0012
  doi: 10.1023/A:1007979827043
– ident: CIT0006
  doi: 10.4208/eajam.090312.080412a
– volume: 7
  start-page: 759
  issue: 4
  year: 2010
  ident: CIT0005
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.2009.09.026
– ident: CIT0039
  doi: 10.1080/00207160.2011.632410
– ident: CIT0021
  doi: 10.1007/BF00133570
– ident: CIT0010
  doi: 10.1137/1.9781611970753
– ident: CIT0035
  doi: 10.1016/0021-9991(86)90008-2
– ident: CIT0014
  doi: 10.1137/040615286
– volume: 0
  start-page: 1
  year: 2013
  ident: CIT0022
  publication-title: Adv. Top. Comput. Vision
– ident: CIT0015
  doi: 10.1109/83.902291
– ident: CIT0027
  doi: 10.1007/s00211-011-0362-7
– ident: CIT0037
  doi: 10.1109/34.87344
– ident: CIT0040
  doi: 10.1002/nla.1856
– ident: CIT0009
  doi: 10.1090/S0025-5718-1977-0431719-X
– ident: CIT0002
  doi: 10.1137/0902035
– ident: CIT0026
  doi: 10.1002/cpa.3160420503
– volume: 3
  volume-title: Matrix computations
  year: 2012
  ident: CIT0018
– ident: CIT0033
  doi: 10.4310/CMS.2015.v13.n6.a5
– ident: CIT0016
  doi: 10.1017/CBO9780511543258
– ident: CIT0019
  doi: 10.1007/s11075-004-3627-8
– ident: CIT0001
  doi: 10.1109/34.295913
– ident: CIT0020
  doi: 10.1117/12.499473
– ident: CIT0031
  doi: 10.1260/1748-3018.7.4.509
– ident: CIT0032
  doi: 10.1016/j.apnum.2016.02.006
– volume: 4
  start-page: 294
  issue: 2
  year: 2008
  ident: CIT0003
  publication-title: Commun. Comput. Phys.
SSID ssj0008976
Score 2.191098
Snippet Automatic segmentation of an image to identify all meaningful parts is one of the most challenging as well as useful tasks in a number of application areas....
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1623
SubjectTerms Algorithms
fast solvers
Fourier analysis
Image segmentation
Iterative methods
jump coefficients
local fourier analysis
Mathematical models
multigrid
Multigrid methods
Object recognition
Partial differential equations
Smoothing
Smoothness
Title Multigrid algorithm based on hybrid smoothers for variational and selective segmentation models
URI https://www.tandfonline.com/doi/abs/10.1080/00207160.2018.1494827
https://www.proquest.com/docview/2220735320
Volume 96
WOSCitedRecordID wos000468295900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: TFW
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPHjxLVar5OB1pW32laOIxVPxULG3kMxu2kK7K5u14L93ks0Wi0gPettlmRAmmW9mlpn5CLlT6BQY6DSQEaarYQqDgA-HEEQx06B0pIeRcmQTyXicTqf8xVcTGl9WaXNo3QyKcFhtjVsq01bE2Q5udIxx3xZmpWjq3I6yRBTGyN4W9U1GbxssTrmjl7MSgRVpe3h-W2XLO23NLv2B1c4BjY7-YevH5NBHn_ShuS4nZC8vTslRy-xAvaGfEeH6cmfVIqNyOSurRT1fUevwMloWdP5p27yoWZWufctQ3D9dY9LtfyxS3B41jmAHsRSfZivf4VRQx7xjzsnr6Gny-Bx4KoYAMIetA-AZT_I4zkJpky5AtUqu8jgaJLYTFqMwqTMp-_hFs0iBDAHs6EFMrjgD0OyCdIqyyC8J7WvQOaQc0SULMV9KGYMEsUXHEVdS6S4J2yMQ4OeUW7qMpRhsxpk2ShRWicIrsUvuN2LvzaCOXQL8-_mK2v0h0Q2diWA7ZHvtZRDe5o3ASAvx0hJtXP1h6WtygK_c1RiyHunU1Ud-Q_ZhXS9Mdetu9xe2WPVq
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA46BX1x_sTp1Dz4WtmWtmseRRwT554m7i2k12YbuE7WOvC_9y5tx4bIHvStEC6kl9xdvnB3H2O3IQYFASZwtIdw1Q2g6chWCxzPFwZC45mWF1qyiXa_HwyHcrUWhtIqCUObvFGE9dVk3PQYXabEUQk3Rka_QZlZAdq6pF6W22yH2OkIgA06b0tvHEhLMEciDsmUVTy_TbMWn9a6l_7w1jYEdar_sfhDdlBcQPl9fmKO2FacHLNqSe7AC1s_YcqW5o7mk4jr99FsPsnGU04xL-KzhI-_qNKLp9OZreBKOf4AXyDuLt4WOa6Pp5ZjB90pfo2mRZFTwi35TnrKXjuPg4euU7AxOIAwNnNARrId-37kasJdgHrVMox9r9mmYli8iGkTad3AESO8ELQLQN0HEV9JAWDEGasksyQ-Z7xhwMQQSHQwkYuQKRAC2uhejO_JUIemxtxyDxQUrcqJMeNdNZcdTXMlKlKiKpRYY3dLsY-8V8cmAbm6wSqzjyQmZzRRYoNsvTwNqjD7VOFlC10mcW1c_GHqG7bXHbz0VO-p_3zJ9nFI2pRDUWeVbP4ZX7FdWGSTdH5tj_o3NO_5jQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aRbxYn1itmoPXlbbZV46iFkUpPVTsLWRnN22h3S3dteC_d5LNFouIB70FwoQwmWeYmY-Q6widAgMVOtLDdNUNoe3wTgccz2cKIuWpjhcZsImg1wuHQ9631YS5LavUObQqB0UYW62Vex6rqiJOd3CjY_RbujArRFXnepTlJtnC0NnTgj3ovq2MccgNvpwmcTRN1cTz0zFr7mlteOk3Y208ULf-D3ffJ3s2_KS3pbwckI0kPST1CtqBWk0_IsI05o4Wk5jK6ShbTIrxjGqPF9MspeMP3edF81lm-rdyivenS8y67c8ixevR3CDsoDHF1WhmW5xSaqB38mPy2n0Y3D06FovBAUxiCwd4zIPE92NX6qwLkK2SR4nvtQPdCothmFSxlC3cUcyLQLoAevYgZlecASh2QmpplianhLYUqARCjuYldjFhChmDAI2LwteLZKQaxK2eQIAdVK7xMqaivZpnWjJRaCYKy8QGuVmRzctJHb8R8K_vKwrzRaJKPBPBfqFtVsIgrNLnAkMtNJgaaePsD0dfkZ3-fVe8PPWez8ku7nBTb8iapFYs3pMLsg3LYpIvLo2gfwJCyPg_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multigrid+algorithm+based+on+hybrid+smoothers+for+variational+and+selective+segmentation+models&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Roberts%2C+Michael&rft.au=Chen%2C+Ke&rft.au=Irion%2C+Klaus+L.&rft.date=2019-08-03&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=96&rft.issue=8&rft.spage=1623&rft.epage=1647&rft_id=info:doi/10.1080%2F00207160.2018.1494827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207160_2018_1494827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon