Tikhonov regularized iterative methods for nonlinear problems

We consider the monotone inclusion problems in real Hilbert spaces. Proximal splitting algorithms are very popular technique to solve it and generally achieve weak convergence under mild assumptions. Researchers assume the strong conditions like strong convexity or strong monotonicity on the conside...

Full description

Saved in:
Bibliographic Details
Published in:Optimization Vol. 73; no. 13; pp. 3787 - 3818
Main Authors: Dixit, Avinash, Sahu, D. R., Gautam, Pankaj, Som, T.
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis 03.12.2024
Taylor & Francis LLC
Subjects:
ISSN:0233-1934, 1029-4945
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the monotone inclusion problems in real Hilbert spaces. Proximal splitting algorithms are very popular technique to solve it and generally achieve weak convergence under mild assumptions. Researchers assume the strong conditions like strong convexity or strong monotonicity on the considered operators to prove strong convergence of the algorithms. Mann iteration method and normal S-iteration method are popular methods to solve fixed point problems. We propose a new common fixed point algorithm based on normal S-iteration method using Tikhonov regularization to find common fixed point of non-expansive operators and prove strong convergence of the generated sequence to the set of common fixed points without assuming strong convexity and strong monotonicity. Based on proposed fixed point algorithm, we propose a forward-backward-type algorithm and a Douglas-Rachford algorithm in connection with Tikhonov regularization to find the solution of monotone inclusion problems. Further, we consider the complexly structured monotone inclusion problems which are very popular these days. We also propose a strongly convergent forward-backward-type primal-dual algorithm and a Douglas-Rachford-type primal-dual algorithm to solve the monotone inclusion problems. Finally, we conduct a numerical experiment to solve image deblurring problems.
AbstractList We consider the monotone inclusion problems in real Hilbert spaces. Proximal splitting algorithms are very popular technique to solve it and generally achieve weak convergence under mild assumptions. Researchers assume the strong conditions like strong convexity or strong monotonicity on the considered operators to prove strong convergence of the algorithms. Mann iteration method and normal S-iteration method are popular methods to solve fixed point problems. We propose a new common fixed point algorithm based on normal S-iteration method using Tikhonov regularization to find common fixed point of non-expansive operators and prove strong convergence of the generated sequence to the set of common fixed points without assuming strong convexity and strong monotonicity. Based on proposed fixed point algorithm, we propose a forward–backward-type algorithm and a Douglas–Rachford algorithm in connection with Tikhonov regularization to find the solution of monotone inclusion problems. Further, we consider the complexly structured monotone inclusion problems which are very popular these days. We also propose a strongly convergent forward–backward-type primal–dual algorithm and a Douglas–Rachford-type primal–dual algorithm to solve the monotone inclusion problems. Finally, we conduct a numerical experiment to solve image deblurring problems.
Author Sahu, D. R.
Gautam, Pankaj
Dixit, Avinash
Som, T.
Author_xml – sequence: 1
  givenname: Avinash
  surname: Dixit
  fullname: Dixit, Avinash
  organization: University of Delhi
– sequence: 2
  givenname: D. R.
  surname: Sahu
  fullname: Sahu, D. R.
  organization: Banaras Hindu University
– sequence: 3
  givenname: Pankaj
  orcidid: 0000-0001-7731-2529
  surname: Gautam
  fullname: Gautam, Pankaj
  email: pgautam908@gmail.com
  organization: Indian Institute of Technology Madras
– sequence: 4
  givenname: T.
  surname: Som
  fullname: Som, T.
  organization: Indian Institute of Technology (BHU)
BookMark eNqFkFtLAzEQhYNUsFZ_grDg89bc9oYISvEGBV_qc8jmYlN3k5qklfrrzdL64oM-zQycM2fmOwUj66wC4ALBKYI1vIKYENQQOsWpm2KchqI6AmMEcZPThhYjMB40-SA6AachrCDEqMR0DG4W5n3prNtmXr1tOu7Nl5KZicrzaLYq61VcOhky7XyWYjtjFffZ2ru2U304A8ead0GdH-oEvD7cL2ZP-fzl8Xl2N88FIXXMRVGUbdNKIVRbCU5poRTiRPFCc0m1FqLSUjS4FlSqlkBZQizqihJaiabVJZmAy_3eFPyxUSGyldt4myIZQRSWDUK4SqrrvUp4F4JXmgkT0xvORs9NxxBkAy_2w4sNvNiBV3IXv9xrb3rud__6bvc-YxOknn8630kW-a5zXntuhRmO_HPFNzzihTU
CitedBy_id crossref_primary_10_3390_fractalfract9080484
Cites_doi 10.1137/0314056
10.1137/0329022
10.1007/s00500-019-03984-7
10.1090/proc/1953-004-03
10.1007/s11075-020-00945-2
10.1287/moor.1.2.97
10.1137/070704277
10.1090/tran/1956-082-02
10.1137/10081602X
10.1137/100788100
10.1112/jlms.2002.66.issue-1
10.1287/moor.26.2.248.10558
10.1016/j.amc.2014.10.076
10.1007/978-1-4614-7621-4_9
10.1137/S1052623495290179
10.1002/nla.2391
10.1186/s13663-015-0465-4
10.1137/0329045
10.1007/s10444-011-9254-8
10.1016/j.jmaa.2005.12.066
10.1137/0716071
10.1007/s10898-012-9958-4
10.1007/s40314-020-01209-4
10.1186/1687-1812-2013-122
10.1007/s11228-011-0191-y
10.1186/s13660-022-02782-4
10.1080/10556788.2018.1457151
10.1007/978-1-4419-9467-7
10.1109/TSP.78
10.1137/18M1229638
10.1287/moor.1070.0253
10.1080/02331939608844217
10.1007/s10957-021-01891-2
10.1023/A:1022643914538
10.1016/0022-247X(79)90234-8
10.1137/050626090
10.1007/s10851-013-0486-8
10.1080/02331934.2021.1895154
10.1137/140992291
10.1016/j.na.2009.03.064
10.1080/02331934.2015.1051532
10.1007/s11075-019-00688-9
10.1002/(ISSN)1097-0312
10.1137/070682071
10.1137/12088255X
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2023.2231957
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 3818
ExternalDocumentID 10_1080_02331934_2023_2231957
2231957
Genre Research Article
GrantInformation_xml – fundername: Indian Institute of Technology Madras
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-c556b9bdcceb7ca445ee1a3ea5fad4ffcc7fdc928c4deb30d602c874347c9bf63
IEDL.DBID TFW
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001024168100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0233-1934
IngestDate Wed Aug 13 07:58:56 EDT 2025
Sat Nov 29 06:01:42 EST 2025
Tue Nov 18 21:24:04 EST 2025
Mon Oct 20 23:47:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-c556b9bdcceb7ca445ee1a3ea5fad4ffcc7fdc928c4deb30d602c874347c9bf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7731-2529
PQID 3140691127
PQPubID 27961
PageCount 32
ParticipantIDs informaworld_taylorfrancis_310_1080_02331934_2023_2231957
proquest_journals_3140691127
crossref_citationtrail_10_1080_02331934_2023_2231957
crossref_primary_10_1080_02331934_2023_2231957
PublicationCentury 2000
PublicationDate 2024-12-03
PublicationDateYYYYMMDD 2024-12-03
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-03
  day: 03
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References e_1_3_2_28_1
e_1_3_2_49_1
e_1_3_2_20_1
e_1_3_2_22_1
e_1_3_2_43_1
e_1_3_2_24_1
Fortin M (e_1_3_2_29_1) 1983
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_47_1
Tihonov AN. (e_1_3_2_16_1) 1963; 4
Agarwal RP (e_1_3_2_41_1) 2007; 8
e_1_3_2_39_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_31_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_58_1
e_1_3_2_5_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_56_1
e_1_3_2_3_1
e_1_3_2_50_1
e_1_3_2_27_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_23_1
e_1_3_2_46_1
Martinet B. (e_1_3_2_9_1) 1972; 274
e_1_3_2_25_1
e_1_3_2_48_1
Bennar A (e_1_3_2_4_1) 2007; 20
e_1_3_2_40_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_55_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_53_1
e_1_3_2_6_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_36_1
e_1_3_2_57_1
Sahu DR. (e_1_3_2_42_1) 2011; 12
e_1_3_2_51_1
Attouch H (e_1_3_2_54_1) 1996; 3
Tikhonov AN (e_1_3_2_15_1) 1977
References_xml – ident: e_1_3_2_11_1
  doi: 10.1137/0314056
– ident: e_1_3_2_12_1
  doi: 10.1137/0329022
– ident: e_1_3_2_43_1
  doi: 10.1007/s00500-019-03984-7
– ident: e_1_3_2_40_1
  doi: 10.1090/proc/1953-004-03
– ident: e_1_3_2_14_1
– volume-title: Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems
  year: 1983
  ident: e_1_3_2_29_1
– ident: e_1_3_2_48_1
  doi: 10.1007/s11075-020-00945-2
– ident: e_1_3_2_10_1
  doi: 10.1287/moor.1.2.97
– ident: e_1_3_2_8_1
  doi: 10.1137/070704277
– ident: e_1_3_2_34_1
  doi: 10.1090/tran/1956-082-02
– ident: e_1_3_2_55_1
  doi: 10.1137/10081602X
– ident: e_1_3_2_28_1
– ident: e_1_3_2_35_1
  doi: 10.1137/100788100
– volume: 20
  start-page: 713
  issue: 5
  year: 2007
  ident: e_1_3_2_4_1
  article-title: Almost sure convergence of a stochastic approximation process in a convex set
  publication-title: Int J Appl Math
– ident: e_1_3_2_17_1
  doi: 10.1112/jlms.2002.66.issue-1
– ident: e_1_3_2_19_1
  doi: 10.1287/moor.26.2.248.10558
– ident: e_1_3_2_45_1
  doi: 10.1016/j.amc.2014.10.076
– ident: e_1_3_2_5_1
  doi: 10.1007/978-1-4614-7621-4_9
– ident: e_1_3_2_30_1
  doi: 10.1137/S1052623495290179
– ident: e_1_3_2_23_1
  doi: 10.1002/nla.2391
– ident: e_1_3_2_46_1
  doi: 10.1186/s13663-015-0465-4
– volume: 4
  start-page: 1035
  year: 1963
  ident: e_1_3_2_16_1
  article-title: Solution of incorrectly formulated problems and the regularization method
  publication-title: Soviet Math
– volume: 3
  start-page: 1
  year: 1996
  ident: e_1_3_2_54_1
  article-title: A general duality principle for the sum of two operators
  publication-title: J Convex Anal
– ident: e_1_3_2_32_1
  doi: 10.1137/0329045
– ident: e_1_3_2_57_1
  doi: 10.1007/s10444-011-9254-8
– ident: e_1_3_2_20_1
– ident: e_1_3_2_31_1
– volume: 8
  start-page: 61
  issue: 1
  year: 2007
  ident: e_1_3_2_41_1
  article-title: Iterative construction of fixed points of nearly asymptotically nonexpansive mappings
  publication-title: J Nonlinear Convex Anal
– ident: e_1_3_2_53_1
  doi: 10.1016/j.jmaa.2005.12.066
– ident: e_1_3_2_26_1
  doi: 10.1137/0716071
– ident: e_1_3_2_36_1
  doi: 10.1007/s10898-012-9958-4
– ident: e_1_3_2_51_1
  doi: 10.1007/s40314-020-01209-4
– ident: e_1_3_2_44_1
  doi: 10.1186/1687-1812-2013-122
– ident: e_1_3_2_56_1
  doi: 10.1007/s11228-011-0191-y
– ident: e_1_3_2_2_1
  doi: 10.1186/s13660-022-02782-4
– ident: e_1_3_2_49_1
  doi: 10.1080/10556788.2018.1457151
– volume: 12
  start-page: 187
  issue: 1
  year: 2011
  ident: e_1_3_2_42_1
  article-title: Applications of the S-iteration process to constrained minimization problems and split feasibility problems
  publication-title: Fixed Point Theory
– ident: e_1_3_2_58_1
  doi: 10.1007/978-1-4419-9467-7
– volume: 274
  start-page: 163
  issue: 2
  year: 1972
  ident: e_1_3_2_9_1
  article-title: Détermination approchée d'un point fixe d'une application pseudo-contractante
  publication-title: CR Acad Sci Paris
– ident: e_1_3_2_25_1
  doi: 10.1109/TSP.78
– ident: e_1_3_2_38_1
  doi: 10.1137/18M1229638
– ident: e_1_3_2_3_1
  doi: 10.1287/moor.1070.0253
– ident: e_1_3_2_18_1
  doi: 10.1080/02331939608844217
– ident: e_1_3_2_24_1
  doi: 10.1007/s10957-021-01891-2
– ident: e_1_3_2_33_1
  doi: 10.1023/A:1022643914538
– ident: e_1_3_2_27_1
  doi: 10.1016/0022-247X(79)90234-8
– ident: e_1_3_2_6_1
  doi: 10.1137/050626090
– ident: e_1_3_2_22_1
  doi: 10.1007/s10851-013-0486-8
– ident: e_1_3_2_50_1
  doi: 10.1080/02331934.2021.1895154
– volume-title: Methods for solving ill-posed problems
  year: 1977
  ident: e_1_3_2_15_1
– ident: e_1_3_2_37_1
  doi: 10.1137/140992291
– ident: e_1_3_2_52_1
  doi: 10.1016/j.na.2009.03.064
– ident: e_1_3_2_39_1
  doi: 10.1080/02331934.2015.1051532
– ident: e_1_3_2_47_1
  doi: 10.1007/s11075-019-00688-9
– ident: e_1_3_2_7_1
  doi: 10.1002/(ISSN)1097-0312
– ident: e_1_3_2_13_1
  doi: 10.1137/070682071
– ident: e_1_3_2_21_1
  doi: 10.1137/12088255X
SSID ssj0021624
Score 2.3904574
Snippet We consider the monotone inclusion problems in real Hilbert spaces. Proximal splitting algorithms are very popular technique to solve it and generally achieve...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3787
SubjectTerms Algorithms
Convergence
Convexity
Douglas-Rachford algorithm
Fixed points (mathematics)
Fixed points of non-expansive mappings
forward-backward algorithm
Hilbert space
Iterative methods
Operators
primal-dual algorithm
Regularization
Splitting
splitting methods
Tikhonov regularization
Title Tikhonov regularized iterative methods for nonlinear problems
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2023.2231957
https://www.proquest.com/docview/3140691127
Volume 73
WOSCitedRecordID wos001024168100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis
  customDbUrl:
  eissn: 1029-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: TFW
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoCBN6JQkAfWlDi242RgQIiKAVUMRXSLnLMtKlCLktKBX4_tOFUrhDrAmOGc0_l8D8v3fQhdMRt4yxhs9DMUIqY5j6QiMkpE6tC9M1FmflD4UQwG2WiUP4XXhHV4Vul6aNMARfhY7Q63LOv2Rdy1TTPWcai7EUloz-Y3knM3T25Tv-MwGPZfFi0XST2trZOInEg7w_PbKivZaQW79Ees9gmov_cPqu-j3VB94tvGXQ7Qhp4cop0lTMIjdDMcv71OJ9M5rjxNfTX-0go34Ms2MuKGcrrGVmc8aXSQFQ68NPUxeu7fD-8eosCxEIFtTmcRcJ6WeakAdClAMsa1JpJqyY1UzBgAYRTkSQZM2b47VmmcQGbLDiYgL01KT9Cm_Zk-RVgoroiIjbYlMONE5kxSpjjlJM2AZkkHsda2BQQAcseD8V6QFqc0WKdw1imCdTqotxD7aBA41gnkyxtXzPzVh2l4Sgq6Rrbb7nIRDrMTcePBtjAVZ39Y-hxt208PEhnTLtqcVZ_6Am3BfDauq0vvtt9Z_-hB
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAEDb0ShgAfWlDi242RgQIiqiNIpiG6W44eoQC1KSwd-PbaTVK0QYoA5Oud0Pt_D8n0fAJfEBt48lDb6GSwDoikNhEIiiFjs0L0Tlid-ULjH-v1kMEgXZ2Hcs0rXQ5sSKMLHane43WV0_STuyuYZ6znYXYlEuG0THEopWwVr1OZa5-VZ53nedKHYE9s6kcDJ1FM8Py2zlJ-W0Eu_RWufgjo7_6H8LtiuClB4U3rMHljRo32wtQBLeACus-Hry3g0nsHCM9UXw0-tYIm_bIMjLFmnJ9AqDUelEqKAFTXN5BA8de6y225Q0SwE0van00BSGudprqTUOZOCEKo1ElgLaoQixkjJjJJplEiibOsdqjiMZGIrD8JkmpsYH4GG_Zk-BpApqhALjbZVMKFIpERgoiimKE4kTqImILVxuawwyB0VxhtHNVRpZR3urMMr6zRBey72XoJw_CaQLu4cn_rbD1NSlXD8i2yr3mZenWcn4iaEbW3KTv6w9AXY6GaPPd677z-cgk37yWNGhrgFGtPiQ5-BdTmbDifFuffhLyJB7Gw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAQDb0R5emBNiWM7TgYGBFQgqqpDEd0ixw9RgdoqCR349diJU7VCqAPM0Tmn8_kelu_7ALgiJvCmvjDRT2PhEUWpxyXiXsBCi-4dsTQqB4U7rNuNBoO4514T5u5Zpe2hdQUUUcZqe7gnUtcv4q5NmjGOg-2NSIBbJr-hmLJVsGZK59D2X_3266znQmHJa2tFPCtTD_H8tsxCeloAL_0RrMsM1N75B913wbYrP-Ft5S97YEWN9sHWHCjhAbjpD9_fxqPxFGYlT302_FISVujLJjTCinM6h0ZnOKp04Bl0xDT5IXhpP_TvHj1HsuAJ050WnqA0TONUCqFSJjghVCnEseJUc0m0FoJpKeIgEkSaxtuXoR-IyNQdhIk41SE-Ag3zM3UMIJNUIuZrZWpgQhGPCcdEUkxRGAkcBU1AatsmwiGQWyKMjwTVQKXOOom1TuKs0wStmdikguBYJhDPb1xSlHcfuiIqSfAS2bN6lxN3mq2InQ82lSk7-cPSl2Cjd99OOk_d51Owab6UgJE-PgONIvtU52BdTIthnl2UHvwNXufrHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tikhonov+regularized+iterative+methods+for+nonlinear+problems&rft.jtitle=Optimization&rft.au=Dixit%2C+Avinash&rft.au=Sahu%2C+D.+R.&rft.au=Gautam%2C+Pankaj&rft.au=Som%2C+T.&rft.date=2024-12-03&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=73&rft.issue=13&rft.spage=3787&rft.epage=3818&rft_id=info:doi/10.1080%2F02331934.2023.2231957&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331934_2023_2231957
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon