Reliability-based design optimization with frequency constraints using a new safest point approach

In the reliability-based design optimization (RBDO) model, the mean values of uncertain variables are usually applied as design variables, and the cost is optimized subject to prescribed probabilistic constraints as defined by a nonlinear mathematical programming problem. Therefore, an RBDO solution...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering optimization Ročník 50; číslo 10; s. 1715 - 1732
Hlavní autoři: El Maani, R., Makhloufi, A., Radi, B., El Hami, A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 03.10.2018
Taylor & Francis Ltd
Témata:
ISSN:0305-215X, 1029-0273
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the reliability-based design optimization (RBDO) model, the mean values of uncertain variables are usually applied as design variables, and the cost is optimized subject to prescribed probabilistic constraints as defined by a nonlinear mathematical programming problem. Therefore, an RBDO solution that reduces the structural weight in non-critical regions provides not only an improved design, but also a higher level of confidence in the design. Solving such nested optimization problems is extremely expensive for large-scale multidisciplinary systems that are likewise computationally intensive. This article focuses on the study of a particular problem representing the failure mode of structural vibration analysis. A new method is proposed, called safest point, that can efficiently give the reliability-based optimum solution under frequency constraints, and then several probability distributions are developed, which are mathematically nonlinear functions, for the proposed method. Finally, the efficiency of the extended approach is demonstrated for probability distributions such as log-normal and uniform distributions, and its applicability to the design of structures undergoing fluid-structure interaction phenomena, especially the design process of aeroelastic structures, is also demonstrated.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0305-215X
1029-0273
DOI:10.1080/0305215X.2017.1416109