Tibetan Sentiment Classification Method Based on Semi-Supervised Recursive Autoencoders
We apply the semi-supervised recursive autoencoders (RAE) model for the sentiment classification task of Tibetan short text, and we obtain a better classification effect. The input of the semi-supervised RAE model is the word vector. We crawled a large amount of Tibetan text from the Internet, got T...
Uloženo v:
| Vydáno v: | Computers, materials & continua Ročník 60; číslo 2; s. 707 - 719 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Henderson
Tech Science Press
2019
|
| Témata: | |
| ISSN: | 1546-2226, 1546-2218, 1546-2226 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We apply the semi-supervised recursive autoencoders (RAE) model for the sentiment classification task of Tibetan short text, and we obtain a better classification effect. The input of the semi-supervised RAE model is the word vector. We crawled a large amount of Tibetan text from the Internet, got Tibetan word vectors by using Word2vec, and verified its validity through simple experiments. The values of parameter α and word vector dimension are important to the model effect. The experiment results indicate that when α is 0.3 and the word vector dimension is 60, the model works best. Our experiment also shows the effectiveness of the semi-supervised RAE model for Tibetan sentiment classification task and suggests the validity of the Tibetan word vectors we trained. |
|---|---|
| AbstractList | We apply the semi-supervised recursive autoencoders (RAE) model for the sentiment classification task of Tibetan short text, and we obtain a better classification effect. The input of the semi-supervised RAE model is the word vector. We crawled a large amount of Tibetan text from the Internet, got Tibetan word vectors by using Word2vec, and verified its validity through simple experiments. The values of parameter α and word vector dimension are important to the model effect. The experiment results indicate that when α is 0.3 and the word vector dimension is 60, the model works best. Our experiment also shows the effectiveness of the semi-supervised RAE model for Tibetan sentiment classification task and suggests the validity of the Tibetan word vectors we trained. |
| Author | Yan, Xiaodong Song, Wei Wang, Anti Zhao, Xiaobing |
| Author_xml | – sequence: 1 givenname: Xiaodong surname: Yan fullname: Yan, Xiaodong – sequence: 2 givenname: Wei surname: Song fullname: Song, Wei – sequence: 3 givenname: Xiaobing surname: Zhao fullname: Zhao, Xiaobing – sequence: 4 givenname: Anti surname: Wang fullname: Wang, Anti |
| BookMark | eNp9kE1LAzEQhoNUsK2evS543jYfm2RzrMUvqAi24HHJZieY0m5qki347922HkTQy8wwPO8MPCM0aH0LCF0TPGFU4GJqtmZCMVETzAmXZ2hIeCFySqkY_Jgv0CjGNcZMMIWH6G3laki6zZbQJrftSzbf6BiddUYn59vsGdK7b7JbHaHJ_AHcunzZ7SDs3WH1CqYL0e0hm3XJQ2t8AyFeonOrNxGuvvsYre7vVvPHfPHy8DSfLXLDWJnyWmnKhBKWlZpIyWRfGsEZ4VYqI8q6UGCgwLSU2krCCiah1LK0vLBW1WyMbk5nd8F_dBBTtfZdaPuPFWVKYMwx5f9SVBaMCaHKnuInygQfYwBbGZeODlLQblMRXB1FV73o6iC6Ooruc9NfuV1wWx0-_0x8Aa-agT0 |
| CitedBy_id | crossref_primary_10_32604_cmc_2021_018593 |
| ContentType | Journal Article |
| Copyright | Copyright Tech Science Press 2019 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright Tech Science Press 2019 – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.32604/cmc.2019.05157 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database Materials Research Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1546-2226 |
| EndPage | 719 |
| ExternalDocumentID | 10_32604_cmc_2019_05157 |
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY RTS TUS 7SC 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c338t-b9a23696f38a17737177d65315f79c68b49ece40287af713437e8a78f54ff9b3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510451800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1546-2226 1546-2218 |
| IngestDate | Sun Nov 30 05:14:49 EST 2025 Mon Jun 30 07:24:19 EDT 2025 Sat Nov 29 05:53:44 EST 2025 Tue Nov 18 21:43:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-b9a23696f38a17737177d65315f79c68b49ece40287af713437e8a78f54ff9b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2396005025?pq-origsite=%requestingapplication% |
| PQID | 2396005025 |
| PQPubID | 2048737 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2396005025 proquest_journals_2274336698 crossref_citationtrail_10_32604_cmc_2019_05157 crossref_primary_10_32604_cmc_2019_05157 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-00-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 2019-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computers, materials & continua |
| PublicationYear | 2019 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| SSID | ssj0036390 |
| Score | 2.1417701 |
| Snippet | We apply the semi-supervised recursive autoencoders (RAE) model for the sentiment classification task of Tibetan short text, and we obtain a better... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 707 |
| SubjectTerms | Classification Recursive methods Sentiment analysis |
| Title | Tibetan Sentiment Classification Method Based on Semi-Supervised Recursive Autoencoders |
| URI | https://www.proquest.com/docview/2274336698 https://www.proquest.com/docview/2396005025 |
| Volume | 60 |
| WOSCitedRecordID | wos000510451800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: PIMPY dateStart: 20040101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6-Dl6sT3yTgwcvaXWTbpKTVLEoaCltQT0t2WwCBfuwD3-_M2lWKKgXTwu7WXbZL5n5ZnYyHyEX2mjpjRHMWW6Z4Eowo7xn3OSWayuAlAekn2SrpV5fdTsm3KaxrLK0icFQFyOLOfJawoFrX9XBRd-MPxiqRuHf1SihsUrWsVMZzPP12_tWu1PaYg7-N2yJrIuUJeDNFs19gLJciZodYAvDa11FmRO57JeWzXLwNc3Kf99ym2xFlkkbi2mxQ1bccJdUSgUHGhf0Hnnp9XMH9JB2sWgIE4U0qGRi_VCAjD4HhWl6C86uoCMcOOiz7nyMJgZPdTBfjyXwtDGfjbArJlZG75Ne875398Ci1AKzEKPOWK5Ngsp-nitzLSWHIE8WKazPupfapioX2lkHsaaSxuP2Uy6dMlL5uvBe5_yArA1HQ3dIqM9TleRWC-8SYQXY9YJjV1OgBQVygSNSLb9zZmMbclTDeM8gHAnAZABMhsBkAZgjcvl9w3jRgeP3oaclKllcitMsgbib8zTV6ufL34gd_335hGzikxbpl1OyNpvM3RnZsJ-z_nRyHiceHNuPz-23L2fF4ns |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFAkulE9RKOADSFzcD9tZ24eqaoGqUZMoopEoJ8vrtaVINAlNAuJH8R87492tVAm49cB1P7Xrp3lv7PE8gLfWW528VzwGGbiSRnFvUuLSl0HaoFCU55Hu6-HQnJ_b0Rr8bvfCUFllGxNzoK5mgebId4RErb3bRYo-mH_n5BpFq6uthUYNi9P46yembIv93kcc33dCHH8afzjhjasAD5iOLXlpvSATuySN39NaYj6jqwKh2E3ahsKUysYQMa0y2ifaaSl1NF6b1FUp2VLiY-_AuiKsd2B91BuMvrahXyLd5x2YXVVwgeRZ9xJChbSrdsIFdUzcs9vkqqJv0uBNFsjUdrzxn_2Uh_Cg0dDssAb9I1iL08ew0fpTsCZcPYEv40kZUfyyMyqJomlQlj1AqToqA5INsn82O0Iqr9iMLryY8LPVnAIoHfpMqxFU4M8OV8sZ9fykuu-nML6Nr3sGnelsGp8DS2VhRBmsSlGooJC1Kkk9W1H0VKR0NmG7HVYXmibr5PXxzWGylXHgEAeOcOAyDjbh_fUN87q_yN8v3WpB4JpAs3BCoASURWHNn09fA-TFv0-_gXsn40Hf9XvD05dwn95aTzRtQWd5uYqv4G74sZwsLl83mGfgbhlQV1Q9OtQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tibetan+Sentiment+Classification+Method+Based+on+Semi-Supervised+Recursive+Autoencoders&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Yan%2C+Xiaodong&rft.au=Song%2C+Wei&rft.au=Zhao%2C+Xiaobing&rft.au=Wang%2C+Anti&rft.date=2019&rft.issn=1546-2226&rft.volume=60&rft.issue=2&rft.spage=707&rft.epage=719&rft_id=info:doi/10.32604%2Fcmc.2019.05157&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2019_05157 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |