Tibetan Sentiment Classification Method Based on Semi-Supervised Recursive Autoencoders

We apply the semi-supervised recursive autoencoders (RAE) model for the sentiment classification task of Tibetan short text, and we obtain a better classification effect. The input of the semi-supervised RAE model is the word vector. We crawled a large amount of Tibetan text from the Internet, got T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua Jg. 60; H. 2; S. 707 - 719
Hauptverfasser: Yan, Xiaodong, Song, Wei, Zhao, Xiaobing, Wang, Anti
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Henderson Tech Science Press 2019
Schlagworte:
ISSN:1546-2226, 1546-2218, 1546-2226
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We apply the semi-supervised recursive autoencoders (RAE) model for the sentiment classification task of Tibetan short text, and we obtain a better classification effect. The input of the semi-supervised RAE model is the word vector. We crawled a large amount of Tibetan text from the Internet, got Tibetan word vectors by using Word2vec, and verified its validity through simple experiments. The values of parameter α and word vector dimension are important to the model effect. The experiment results indicate that when α is 0.3 and the word vector dimension is 60, the model works best. Our experiment also shows the effectiveness of the semi-supervised RAE model for Tibetan sentiment classification task and suggests the validity of the Tibetan word vectors we trained.
AbstractList We apply the semi-supervised recursive autoencoders (RAE) model for the sentiment classification task of Tibetan short text, and we obtain a better classification effect. The input of the semi-supervised RAE model is the word vector. We crawled a large amount of Tibetan text from the Internet, got Tibetan word vectors by using Word2vec, and verified its validity through simple experiments. The values of parameter α and word vector dimension are important to the model effect. The experiment results indicate that when α is 0.3 and the word vector dimension is 60, the model works best. Our experiment also shows the effectiveness of the semi-supervised RAE model for Tibetan sentiment classification task and suggests the validity of the Tibetan word vectors we trained.
Author Yan, Xiaodong
Song, Wei
Wang, Anti
Zhao, Xiaobing
Author_xml – sequence: 1
  givenname: Xiaodong
  surname: Yan
  fullname: Yan, Xiaodong
– sequence: 2
  givenname: Wei
  surname: Song
  fullname: Song, Wei
– sequence: 3
  givenname: Xiaobing
  surname: Zhao
  fullname: Zhao, Xiaobing
– sequence: 4
  givenname: Anti
  surname: Wang
  fullname: Wang, Anti
BookMark eNp9kE1LAzEQhoNUsK2evS543jYfm2RzrMUvqAi24HHJZieY0m5qki347922HkTQy8wwPO8MPCM0aH0LCF0TPGFU4GJqtmZCMVETzAmXZ2hIeCFySqkY_Jgv0CjGNcZMMIWH6G3laki6zZbQJrftSzbf6BiddUYn59vsGdK7b7JbHaHJ_AHcunzZ7SDs3WH1CqYL0e0hm3XJQ2t8AyFeonOrNxGuvvsYre7vVvPHfPHy8DSfLXLDWJnyWmnKhBKWlZpIyWRfGsEZ4VYqI8q6UGCgwLSU2krCCiah1LK0vLBW1WyMbk5nd8F_dBBTtfZdaPuPFWVKYMwx5f9SVBaMCaHKnuInygQfYwBbGZeODlLQblMRXB1FV73o6iC6Ooruc9NfuV1wWx0-_0x8Aa-agT0
CitedBy_id crossref_primary_10_32604_cmc_2021_018593
ContentType Journal Article
Copyright Copyright Tech Science Press 2019
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright Tech Science Press 2019
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2019.05157
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Materials Research Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 719
ExternalDocumentID 10_32604_cmc_2019_05157
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c338t-b9a23696f38a17737177d65315f79c68b49ece40287af713437e8a78f54ff9b3
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510451800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Sun Nov 30 05:14:49 EST 2025
Mon Jun 30 07:24:19 EDT 2025
Sat Nov 29 05:53:44 EST 2025
Tue Nov 18 21:43:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-b9a23696f38a17737177d65315f79c68b49ece40287af713437e8a78f54ff9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2396005025?pq-origsite=%requestingapplication%
PQID 2396005025
PQPubID 2048737
PageCount 13
ParticipantIDs proquest_journals_2396005025
proquest_journals_2274336698
crossref_citationtrail_10_32604_cmc_2019_05157
crossref_primary_10_32604_cmc_2019_05157
PublicationCentury 2000
PublicationDate 2019-00-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2019
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
SSID ssj0036390
Score 2.1416652
Snippet We apply the semi-supervised recursive autoencoders (RAE) model for the sentiment classification task of Tibetan short text, and we obtain a better...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 707
SubjectTerms Classification
Recursive methods
Sentiment analysis
Title Tibetan Sentiment Classification Method Based on Semi-Supervised Recursive Autoencoders
URI https://www.proquest.com/docview/2274336698
https://www.proquest.com/docview/2396005025
Volume 60
WOSCitedRecordID wos000510451800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELXYDlzYEWWTDxy4uE3jNI5PCBAVSLSqSgXlFMWOLVWiC134fmYcp1Il4MIpUpwoUZ49b2YynkfIVZ5ZlQHRM8FjzaLMGiajIGMqiaw2Wint_pi-Pot2O-n3Zccn3Ga-rLK0ic5Q52ONOfJayMHXDhpA0TeTT4aqUfh31UtorJNN7FQG83zz7qHd6Za2mAP_ui2RjShmIbBZ0dwHXJYgqukhtjCsyyrKnIhVXlo1y45rmrv_fcs9suO9THpbTIt9smZGB2S3VHCgfkEfkrfeQBlwD-kLFg1hopA6lUysH3KQ0ZZTmKZ3QHY5HeOFwwF7WUzQxOCpLubrsQSe3i7mY-yKiZXRR6TXfOjdPzIvtcA0xKhzpmQWorKf5UlWF4JDkCfyGNZnwwqp40RF0mgDsWYiMovbT7kwSSYS24islYofk43ReGROCBV5PZZAezaQHOAOFThkYZCIPJKhBm-mQqrld061b0OOahgfKYQjDpgUgEkRmNQBUyHXyxsmRQeO3y89L1FJ_VKcpSHE3ZzH8FI_Dy8RO_17-Ixs45OK9Ms52ZhPF-aCbOmv-WA2vfQTD46dp1bn_Rt3IeI1
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAkuLa-KlgI-gMTF7cZ21usDQuVRNWoSRTSCcrLWXluKRJPQJCB-FP-RGe9upUrArQeua-_D60_zzdjj-QBeVGV0JRI91zL3XJUxcKOykrtCRR-8cz7tmH4a6NGoOD834w341Z6FobTK1iYmQ13NPa2RHwqJvnbWQ4p-s_jGSTWKdldbCY0aFqfh5w8M2Zav--9xfl8Kcfxh8u6EN6oC3GM4tuLOlIJE7KIsyq7WEuMZXeUIxV7UxueFUyb4gGFVoctIJy2lDkWpi9hTMRon8bG3YFMR1juwOe4Px19a0y-R7tMJzJ7KuUDyrGsJoYeUqUN_QRUTu-aAVFX0dRq8zgKJ2o63_7Ofcg-2Gh-aHdWgvw8bYfYAtlt9CtaYq4fweTJ1AZ1fdkYpUbQMypIGKGVHJUCyYdLPZm-Ryis2p44XU362XpABpUsfaTeCEvzZ0Xo1p5qflPf9CCY3Mbod6Mzms_AYmK66uUFSj5mRCGbh0N0UWaErZYRHX20XDtpptb4psk5aH18tBlsJBxZxYAkHNuFgF15d3bCo64v8vet-CwLbGJqlFQJdQJnjR_25-Qoge_9ufg53TibDgR30R6dP4C69tV5o2ofO6nIdnsJt_301XV4-azDPwN4woH4D4u86jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tibetan+Sentiment+Classification+Method+Based+on+Semi-Supervised+Recursive+Autoencoders&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Yan%2C+Xiaodong&rft.au=Song%2C+Wei&rft.au=Zhao%2C+Xiaobing&rft.au=Wang%2C+Anti&rft.date=2019&rft.issn=1546-2226&rft.volume=60&rft.issue=2&rft.spage=707&rft.epage=719&rft_id=info:doi/10.32604%2Fcmc.2019.05157&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2019_05157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon