Efficient parallel genetic algorithms: theory and practice

Parallel genetic algorithms (GAs) are complex programs that are controlled by many parameters, which affect their search quality and their efficiency. The goal of this paper is to provide guidelines to choose those parameters rationally. The investigation centers on the sizing of populations, becaus...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering Vol. 186; no. 2; pp. 221 - 238
Main Authors: Cantú-Paz, Erick, Goldberg, David E.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2000
ISSN:0045-7825, 1879-2138
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Parallel genetic algorithms (GAs) are complex programs that are controlled by many parameters, which affect their search quality and their efficiency. The goal of this paper is to provide guidelines to choose those parameters rationally. The investigation centers on the sizing of populations, because previous studies show that there is a crucial relation between solution quality and population size. As a first step, the paper shows how to size a simple GA to reach a solution of a desired quality. The simple GA is then parallelized, and its execution time is optimized. The rest of the paper deals with parallel GAs with multiple populations. Two bounding cases of the migration rate and topology are analyzed, and the case that yields good speedups is optimized. Later, the models are specialized to consider sparse topologies and migration rates that are more likely to be used by practitioners. The paper also presents the additional advantages of combining multi- and single-population parallel GAs. The results of this work are simple models that practitioners may use to design efficient and competent parallel GAs.
AbstractList Parallel genetic algorithms (GAs) are complex programs that are controlled by many parameters, which affect their search quality and their efficiency. The goal of this paper is to provide guidelines to choose those parameters rationally. The investigation centers on the sizing of populations, because previous studies show that there is a crucial relation between solution quality and population size. As a first step, the paper shows how to size a simple GA to reach a solution of a desired quality. The simple GA is then parallelized, and its execution time is optimized. The rest of the paper deals with parallel GAs with multiple populations. Two bounding cases of the migration rate and topology are analyzed, and the case that yields good speedups is optimized. Later, the models are specialized to consider sparse topologies and migration rates that are more likely to be used by practitioners. The paper also presents the additional advantages of combining multi- and single-population parallel GAs. The results of this work are simple models that practitioners may use to design efficient and competent parallel GAs.
Author Cantú-Paz, Erick
Goldberg, David E.
Author_xml – sequence: 1
  givenname: Erick
  surname: Cantú-Paz
  fullname: Cantú-Paz, Erick
  email: cantupaz@illigal.ge.uiuc.edu
  organization: Department of Computer Science and Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana–Champaign, 117 Transportation Bldg., 104 South Matthews Ave., Urbana, USA
– sequence: 2
  givenname: David E.
  surname: Goldberg
  fullname: Goldberg, David E.
  email: deg@illigal.ge.uiuc.edu
  organization: Department of General Engineering and Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana–Champaign, Urbana, USA
BookMark eNqFkE1LAzEQhoNUsK3-BGFPoofVJLtpknoQKfUDCh7Uc8hmZ9tIulmTVOi_d9uKBy_OZWDmfd7DM0KD1reA0DnB1wSTyc0rxiXLuaDsUsorjAvBcnyEhkRwmVNSiAEa_kZO0CjGD9yPIHSIpvOmscZCm7JOB-0cuGwJLSRrMu2WPti0WsdpllbgwzbTbZ11QZv-DafouNEuwtnPHqP3h_nb7ClfvDw-z-4XuSkKkfKqFA3FIGVZ6RqXpayhPzFghlOueQkVaaqCAFRVRYTmdMKYJDWRXDYVYXUxRheH3i74zw3EpNY2GnBOt-A3UVHOCCNU9MHbQ9AEH2OARhmbdLK-TUFbpwhWO19q70vtZCgp1d6Xwj3N_tBdsGsdtv9ydwcOegdfFoKKO58GahvAJFV7-0_DN_9-hK8
CitedBy_id crossref_primary_10_1016_j_compchemeng_2014_02_009
crossref_primary_10_1016_j_jcp_2011_03_012
crossref_primary_10_1016_j_swevo_2019_06_003
crossref_primary_10_1016_j_commatsci_2008_04_031
crossref_primary_10_1016_S0262_8856_00_00100_1
crossref_primary_10_1016_j_seppur_2024_127496
crossref_primary_10_1623_hysj_2005_50_6_1069
crossref_primary_10_1002_tal_366
crossref_primary_10_1016_S0045_7949_02_00073_1
crossref_primary_10_1109_JIOT_2023_3313048
crossref_primary_10_1108_02644401311329389
crossref_primary_10_1371_journal_pone_0185478
crossref_primary_10_1016_j_jpdc_2006_08_002
crossref_primary_10_1068_a34109
crossref_primary_10_1016_S0952_1976_02_00036_2
crossref_primary_10_1016_j_compstruct_2008_04_007
crossref_primary_10_1016_j_parco_2014_04_008
crossref_primary_10_1051_ijsmdo_2007005
crossref_primary_10_1007_s00170_005_0283_7
crossref_primary_10_1016_j_future_2014_09_004
crossref_primary_10_1016_j_neucom_2006_11_031
crossref_primary_10_1109_4235_873233
crossref_primary_10_1080_10426910802675814
crossref_primary_10_1016_j_neucom_2017_03_050
crossref_primary_10_1002_tal_351
crossref_primary_10_1016_j_asoc_2015_02_010
crossref_primary_10_1016_j_compscitech_2009_01_011
crossref_primary_10_1061__ASCE_CP_1943_5487_0000502
crossref_primary_10_1177_1094342012451474
crossref_primary_10_1016_j_parco_2010_04_002
crossref_primary_10_1016_j_advengsoft_2010_10_006
crossref_primary_10_1016_j_cma_2008_05_025
crossref_primary_10_1155_2014_178621
crossref_primary_10_1016_j_asoc_2019_105929
crossref_primary_10_1109_TCBB_2009_24
crossref_primary_10_1007_s00366_012_0270_1
crossref_primary_10_1108_02644400310476333
crossref_primary_10_1016_j_engappai_2024_109337
crossref_primary_10_9746_jcmsi_4_105
crossref_primary_10_1016_j_ins_2013_05_019
crossref_primary_10_1016_j_compstruc_2024_107463
crossref_primary_10_1016_j_neucom_2025_130631
crossref_primary_10_1111_1467_8306_9303005
crossref_primary_10_1016_j_cemconres_2003_08_018
crossref_primary_10_1002_cpe_2913
crossref_primary_10_1002_cpe_6266
crossref_primary_10_1016_j_patcog_2009_07_016
crossref_primary_10_1023_A_1011375326814
crossref_primary_10_1016_j_chemolab_2011_01_008
crossref_primary_10_1007_s12293_022_00376_7
crossref_primary_10_1002_crat_201400443
crossref_primary_10_1080_10255842_2025_2525980
crossref_primary_10_1016_j_imavis_2005_07_001
crossref_primary_10_1287_ijoc_1070_0224
crossref_primary_10_1061__ASCE_CP_1943_5487_0000841
crossref_primary_10_1016_j_ejor_2022_03_022
Cites_doi 10.1016/B978-0-08-094832-4.50012-X
10.1109/ICEC.1997.592259
10.1007/3-540-58484-6_293
10.1007/BFb0029745
ContentType Journal Article
Copyright 2000 Elsevier Science S.A.
Copyright_xml – notice: 2000 Elsevier Science S.A.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/S0045-7825(99)00385-0
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
EndPage 238
ExternalDocumentID 10_1016_S0045_7825_99_00385_0
S0045782599003850
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
VH1
VOH
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-b48f20e994bad0449deb485e5c727a74eb1fb31eebbb18a7265591d1979fb15d3
ISICitedReferencesCount 109
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000087538300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Sun Sep 28 08:17:38 EDT 2025
Sat Nov 29 03:20:39 EST 2025
Tue Nov 18 21:31:38 EST 2025
Fri Feb 23 02:33:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-b48f20e994bad0449deb485e5c727a74eb1fb31eebbb18a7265591d1979fb15d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27515128
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_27515128
crossref_citationtrail_10_1016_S0045_7825_99_00385_0
crossref_primary_10_1016_S0045_7825_99_00385_0
elsevier_sciencedirect_doi_10_1016_S0045_7825_99_00385_0
PublicationCentury 2000
PublicationDate 2000-01-01
PublicationDateYYYYMMDD 2000-01-01
PublicationDate_xml – month: 01
  year: 2000
  text: 2000-01-01
  day: 01
PublicationDecade 2000
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2000
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fogarty, Huang (BIB12) 1991
R. Hauser, R. Männer, Implementation of standard genetic algorithm on MIMD machines, in: Y. Davidor, H.-P. Schwefel, R. Männer (Eds.), Parallel Problem Solving from Nature, PPSN III, Springer, Berlin, 1994, pp. 504–513
M. Abramovitz, I. Stegun (Eds.), Handbook of Mathematic Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1972
Deb, Goldberg (BIB10) 1993
E. Cantú-Paz, Using Markov chains to analyze a bounding case of parallel genetic algorithms, in: J.R. Koza, W. Banzhaf, K. Chellapilla, M. Deb, K. Dorigo, D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, R.L. Riolo (Eds.), Genetic Programming 1998: Proceedings of the Third Annual Conference, Morgan Kaufmann, San Francisco, CA, 1998, pp. 456–462
P.B. Grosso, Computer simulations of genetic adaptation: parallel subcomponent interaction in a multilocus model, Ph.D. Thesis, The University of Michigan, 1985
Goldberg, Deb, Clark (BIB14) 1992; 6
Bianchini, Brown (BIB4) 1993; 6
Goldberg (BIB13) 1989
G. Harik, E. Cantú-Paz, D.E. Goldberg, B.L. Miller, The gambler's ruin problem, genetic algorithms, and the sizing of populations, in: Proceedings of the 1997 IEEE International Conference on Evolutionary Computation, IEEE, Piscataway, NJ, 1997, pp. 7–12
E. Cantú-Paz, D.E. Goldberg, Modeling idealized bounding cases of parallel genetic algorithms, in: J. Koza, K. Deb, M. Dorigo, D. Fogel, M. Garzon, H. Iba, R. Riolo (Eds.), Genetic Programming 1997: Proceedings of the Second Annual Conference, Morgan Kaufmann, San Francisco, CA, 1997, pp. 353–361
Leon Harter (BIB18) 1970
D. Abramson, G. Mills, S. Perkins, Parallelisation of a genetic algorithm for the computation of efficient train schedules, in: Proceedings of the 1993 Parallel Computing and Transputers Conference, 1993, pp. 139–149
M. Munetomo, Y. Takai, Y. Sato, An efficient migration scheme for subpopulation-based asynchronously parallel genetic algorithms, in: S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1993, p. 649
M. Valenzuela-Rendón, Two analysis tools to describe the operation of classifier systems, Ph.D. Thesis, University of Alabama, Tuscaloosa, 1989
E. Cantú-Paz, D.E. Goldberg, Predicting speedups of idealized bounding cases of parallel genetic algorithms, in: T. Bäck (Ed.), Proceedings of the Seventh International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, 1997, pp. 113–121
J.J. Grefenstette, Parallel adaptive algorithms for function optimization, Tech. Rep. No. CS-81-19, Vanderbilt University, Computer Science Department, Nashville, TN, 1981
Braun (BIB5) 1990
W. Feller, An Introduction to Probability Theory and its Applications, second ed., vol. 1, Wiley, New York, 1966
Cantú-Paz (BIB6) 1998; 10
A.D. Bethke, Comparison of genetic algorithms and gradient-based optimizers on parallel processors: efficiency of use of processing capacity, Tech. Rep. No. 197, University of Michigan, Logic of Computers Group, Ann Arbor, MI, 1976
D. Thierens, D.E. Goldberg, Mixing in genetic algorithms, in: S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1993, pp. 38–45
Goldberg (10.1016/S0045-7825(99)00385-0_BIB13) 1989
10.1016/S0045-7825(99)00385-0_BIB19
10.1016/S0045-7825(99)00385-0_BIB15
10.1016/S0045-7825(99)00385-0_BIB16
10.1016/S0045-7825(99)00385-0_BIB17
10.1016/S0045-7825(99)00385-0_BIB2
10.1016/S0045-7825(99)00385-0_BIB21
10.1016/S0045-7825(99)00385-0_BIB1
10.1016/S0045-7825(99)00385-0_BIB11
10.1016/S0045-7825(99)00385-0_BIB22
10.1016/S0045-7825(99)00385-0_BIB3
Bianchini (10.1016/S0045-7825(99)00385-0_BIB4) 1993; 6
Cantú-Paz (10.1016/S0045-7825(99)00385-0_BIB6) 1998; 10
Braun (10.1016/S0045-7825(99)00385-0_BIB5) 1990
Goldberg (10.1016/S0045-7825(99)00385-0_BIB14) 1992; 6
Leon Harter (10.1016/S0045-7825(99)00385-0_BIB18) 1970
10.1016/S0045-7825(99)00385-0_BIB20
10.1016/S0045-7825(99)00385-0_BIB9
Fogarty (10.1016/S0045-7825(99)00385-0_BIB12) 1991
10.1016/S0045-7825(99)00385-0_BIB8
10.1016/S0045-7825(99)00385-0_BIB7
Deb (10.1016/S0045-7825(99)00385-0_BIB10) 1993
References_xml – reference: P.B. Grosso, Computer simulations of genetic adaptation: parallel subcomponent interaction in a multilocus model, Ph.D. Thesis, The University of Michigan, 1985
– reference: D. Thierens, D.E. Goldberg, Mixing in genetic algorithms, in: S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1993, pp. 38–45
– reference: W. Feller, An Introduction to Probability Theory and its Applications, second ed., vol. 1, Wiley, New York, 1966
– reference: M. Valenzuela-Rendón, Two analysis tools to describe the operation of classifier systems, Ph.D. Thesis, University of Alabama, Tuscaloosa, 1989
– start-page: 145
  year: 1991
  end-page: 149
  ident: BIB12
  article-title: Implementing the genetic algorithm on transputer based parallel processing systems
  publication-title: Parallel Problem Solving from Nature
– start-page: 129
  year: 1990
  end-page: 133
  ident: BIB5
  article-title: On solving travelling salesman problems by genetic algorithms
  publication-title: Parallel Problem Solving from Nature
– reference: M. Munetomo, Y. Takai, Y. Sato, An efficient migration scheme for subpopulation-based asynchronously parallel genetic algorithms, in: S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1993, p. 649
– reference: M. Abramovitz, I. Stegun (Eds.), Handbook of Mathematic Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1972
– volume: 10
  start-page: 141
  year: 1998
  end-page: 171
  ident: BIB6
  article-title: A survey of parallel genetic algorithms
  publication-title: Calculateurs Parallèles Reseaux et Systems Repartis
– reference: G. Harik, E. Cantú-Paz, D.E. Goldberg, B.L. Miller, The gambler's ruin problem, genetic algorithms, and the sizing of populations, in: Proceedings of the 1997 IEEE International Conference on Evolutionary Computation, IEEE, Piscataway, NJ, 1997, pp. 7–12
– reference: A.D. Bethke, Comparison of genetic algorithms and gradient-based optimizers on parallel processors: efficiency of use of processing capacity, Tech. Rep. No. 197, University of Michigan, Logic of Computers Group, Ann Arbor, MI, 1976
– year: 1989
  ident: BIB13
  publication-title: Genetic Algorithms in Search, Optimization, and Machine Learning
– reference: E. Cantú-Paz, D.E. Goldberg, Modeling idealized bounding cases of parallel genetic algorithms, in: J. Koza, K. Deb, M. Dorigo, D. Fogel, M. Garzon, H. Iba, R. Riolo (Eds.), Genetic Programming 1997: Proceedings of the Second Annual Conference, Morgan Kaufmann, San Francisco, CA, 1997, pp. 353–361
– reference: E. Cantú-Paz, D.E. Goldberg, Predicting speedups of idealized bounding cases of parallel genetic algorithms, in: T. Bäck (Ed.), Proceedings of the Seventh International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, 1997, pp. 113–121
– reference: R. Hauser, R. Männer, Implementation of standard genetic algorithm on MIMD machines, in: Y. Davidor, H.-P. Schwefel, R. Männer (Eds.), Parallel Problem Solving from Nature, PPSN III, Springer, Berlin, 1994, pp. 504–513
– volume: 6
  start-page: 333
  year: 1992
  end-page: 362
  ident: BIB14
  article-title: Genetic algorithms, noise, and the sizing of populations
  publication-title: Complex Systems
– reference: E. Cantú-Paz, Using Markov chains to analyze a bounding case of parallel genetic algorithms, in: J.R. Koza, W. Banzhaf, K. Chellapilla, M. Deb, K. Dorigo, D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, R.L. Riolo (Eds.), Genetic Programming 1998: Proceedings of the Third Annual Conference, Morgan Kaufmann, San Francisco, CA, 1998, pp. 456–462
– start-page: 93
  year: 1993
  end-page: 108
  ident: BIB10
  article-title: Analyzing deception in trap functions
  publication-title: Foundations of Genetic Algorithms 2
– year: 1970
  ident: BIB18
  publication-title: Order Statistics and their Use in Testing and Estimation
– reference: J.J. Grefenstette, Parallel adaptive algorithms for function optimization, Tech. Rep. No. CS-81-19, Vanderbilt University, Computer Science Department, Nashville, TN, 1981
– reference: D. Abramson, G. Mills, S. Perkins, Parallelisation of a genetic algorithm for the computation of efficient train schedules, in: Proceedings of the 1993 Parallel Computing and Transputers Conference, 1993, pp. 139–149
– volume: 6
  start-page: 67
  year: 1993
  end-page: 82
  ident: BIB4
  article-title: Parallel genetic algorithms on distributed-memory architectures
  publication-title: Transputer Research and Applications
– ident: 10.1016/S0045-7825(99)00385-0_BIB1
– ident: 10.1016/S0045-7825(99)00385-0_BIB2
– volume: 10
  start-page: 141
  issue: 2
  year: 1998
  ident: 10.1016/S0045-7825(99)00385-0_BIB6
  article-title: A survey of parallel genetic algorithms
  publication-title: Calculateurs Parallèles Reseaux et Systems Repartis
– start-page: 93
  year: 1993
  ident: 10.1016/S0045-7825(99)00385-0_BIB10
  article-title: Analyzing deception in trap functions
  doi: 10.1016/B978-0-08-094832-4.50012-X
– ident: 10.1016/S0045-7825(99)00385-0_BIB11
– volume: 6
  start-page: 67
  year: 1993
  ident: 10.1016/S0045-7825(99)00385-0_BIB4
  article-title: Parallel genetic algorithms on distributed-memory architectures
  publication-title: Transputer Research and Applications
– ident: 10.1016/S0045-7825(99)00385-0_BIB17
  doi: 10.1109/ICEC.1997.592259
– ident: 10.1016/S0045-7825(99)00385-0_BIB19
  doi: 10.1007/3-540-58484-6_293
– start-page: 145
  year: 1991
  ident: 10.1016/S0045-7825(99)00385-0_BIB12
  article-title: Implementing the genetic algorithm on transputer based parallel processing systems
  publication-title: Parallel Problem Solving from Nature
  doi: 10.1007/BFb0029745
– ident: 10.1016/S0045-7825(99)00385-0_BIB16
– year: 1989
  ident: 10.1016/S0045-7825(99)00385-0_BIB13
– ident: 10.1016/S0045-7825(99)00385-0_BIB20
– ident: 10.1016/S0045-7825(99)00385-0_BIB15
– ident: 10.1016/S0045-7825(99)00385-0_BIB22
– ident: 10.1016/S0045-7825(99)00385-0_BIB21
– volume: 6
  start-page: 333
  year: 1992
  ident: 10.1016/S0045-7825(99)00385-0_BIB14
  article-title: Genetic algorithms, noise, and the sizing of populations
  publication-title: Complex Systems
– start-page: 129
  year: 1990
  ident: 10.1016/S0045-7825(99)00385-0_BIB5
  article-title: On solving travelling salesman problems by genetic algorithms
– ident: 10.1016/S0045-7825(99)00385-0_BIB3
– year: 1970
  ident: 10.1016/S0045-7825(99)00385-0_BIB18
– ident: 10.1016/S0045-7825(99)00385-0_BIB7
– ident: 10.1016/S0045-7825(99)00385-0_BIB8
– ident: 10.1016/S0045-7825(99)00385-0_BIB9
SSID ssj0000812
Score 2.01331
Snippet Parallel genetic algorithms (GAs) are complex programs that are controlled by many parameters, which affect their search quality and their efficiency. The goal...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 221
Title Efficient parallel genetic algorithms: theory and practice
URI https://dx.doi.org/10.1016/S0045-7825(99)00385-0
https://www.proquest.com/docview/27515128
Volume 186
WOSCitedRecordID wos000087538300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagywEOPBYQy9MHFsHBkIfT2HtboS4PVWUluqg3K44dWCmblqaLVvx6xq8kgFDhwCWqrDqRPJ9nxp6ZbxB6SssxoIBlpCwqRWiqYEspzQlVpUrBIlW5rUr7NM1nM7ZY8GOfxN7adgJ507CLC776r6KGMRC2KZ39B3F3L4UB-A1ChyeIHZ5_JfiJJYUwIX5D613XujZtkrUlZq0_L9enmy9nrU_nMAF2xxTgaqWGrmro9-CbTNu82cL7rGfaFAwHgmfdcxr2IQ2wZeS4-B50bVcQ9GZZq5BTZhPqfS1EuHmIBjcPXpvSjIA8s5-16XgAm2SoG10ptDeziSN1-U2Du8uEj927982JcD_hNoRJot5shVD97IM4OplOxXyymD9bfSWmoZgJvPvuKpfRTpJnnI3QzuG7yeJ9b6ZZ7Kjk_Yf68q5X_defc_7Cf_lPjssvJtz6JfOb6Lo_UOBDB4Rb6JJudtENf7jAXnW3u-jagHnyNjroUIIDSrBHCe5RcoAdRjBIGQeM3EEnR5P567fEt9EgZZqyDZGUVUmkOaeyUBGlsBdhKNNZCb5rkVOw1pVMY62llDEr8mQMp8xYxTznlYwzld5Fo2bZ6HsIw2E1MWxEcEYd01xqluis0omKuKw0i-QeomGNROk55k2rk1r0yYSwtMIsreBc2KUV0R562U1bOZKVbRNYEIDwnqLzAAXAaNvUJ0FgAjSpCY8VjV6etwJgYtxfdn_rPx6gq_1-eIhGm_W5foSulN82p-36sQfaDywGjr0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+parallel+genetic+algorithms%3A+theory+and+practice&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Cantu-Paz%2C+Erick&rft.au=Goldberg%2C+David+E&rft.date=2000-01-01&rft.issn=0045-7825&rft.volume=186&rft.issue=2&rft.spage=221&rft.epage=238&rft_id=info:doi/10.1016%2FS0045-7825%2899%2900385-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon