Incremental proximal gradient scheme with penalization for constrained composite convex optimization problems

We consider the problem of minimizing a finite sum of convex functions subject to the set of minimizers of a convex differentiable function. In order to solve the problem, an algorithm combining the incremental proximal gradient method with smooth penalization technique is proposed. We show the conv...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization Ročník 70; číslo 5-6; s. 1307 - 1336
Hlavní autori: Petrot, Narin, Nimana, Nimit
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Taylor & Francis 03.06.2021
Taylor & Francis LLC
Predmet:
ISSN:0233-1934, 1029-4945
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider the problem of minimizing a finite sum of convex functions subject to the set of minimizers of a convex differentiable function. In order to solve the problem, an algorithm combining the incremental proximal gradient method with smooth penalization technique is proposed. We show the convergence of the generated sequence of iterates to an optimal solution of the optimization problems, provided that a condition expressed via the Fenchel conjugate of the constraint function is fulfilled. Finally, the functionality of the method is illustrated by some numerical experiments addressing image inpainting problems and generalized Heron problems with least squares constraints.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2020.1846188