Incremental proximal gradient scheme with penalization for constrained composite convex optimization problems

We consider the problem of minimizing a finite sum of convex functions subject to the set of minimizers of a convex differentiable function. In order to solve the problem, an algorithm combining the incremental proximal gradient method with smooth penalization technique is proposed. We show the conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization Jg. 70; H. 5-6; S. 1307 - 1336
Hauptverfasser: Petrot, Narin, Nimana, Nimit
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Taylor & Francis 03.06.2021
Taylor & Francis LLC
Schlagworte:
ISSN:0233-1934, 1029-4945
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of minimizing a finite sum of convex functions subject to the set of minimizers of a convex differentiable function. In order to solve the problem, an algorithm combining the incremental proximal gradient method with smooth penalization technique is proposed. We show the convergence of the generated sequence of iterates to an optimal solution of the optimization problems, provided that a condition expressed via the Fenchel conjugate of the constraint function is fulfilled. Finally, the functionality of the method is illustrated by some numerical experiments addressing image inpainting problems and generalized Heron problems with least squares constraints.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2020.1846188