The generalized viscosity explicit rules for solving variational inclusion problems in Banach spaces

In this paper, we propose a generalized viscosity explicit method for finding zeros of the sum of two accretive operators in the framework of Banach spaces. The strong convergence theorem of such method is proved under some suitable assumption on the parameters. As applications, we apply our main re...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 70; číslo 12; s. 2607 - 2633
Hlavní autoři: Cholamjiak, Prasit, Pholasa, Nattawut, Suantai, Suthep, Sunthrayuth, Pongsakorn
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Taylor & Francis 02.12.2021
Taylor & Francis LLC
Témata:
ISSN:0233-1934, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose a generalized viscosity explicit method for finding zeros of the sum of two accretive operators in the framework of Banach spaces. The strong convergence theorem of such method is proved under some suitable assumption on the parameters. As applications, we apply our main result to the variational inequality problem, the convex minimization problem and the split feasibility problem. The numerical experiments to illustrate the behaviour of the proposed method including compare it with other methods are also presented.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2020.1789131