Enhanced evolutionary algorithms for single and multiobjective optimization in the job shop scheduling problem

Over the past few years, a continually increasing number of research efforts have investigated the application of evolutionary computation techniques for the solution of scheduling problems. Scheduling can pose extremely complex combinatorial optimization problems, which belong to the NP-hard family...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 15; číslo 1; s. 13 - 25
Hlavní autoři: Esquivel, S., Ferrero, S., Gallard, R., Salto, C., Alfonso, H., Schütz, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2002
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Over the past few years, a continually increasing number of research efforts have investigated the application of evolutionary computation techniques for the solution of scheduling problems. Scheduling can pose extremely complex combinatorial optimization problems, which belong to the NP-hard family. Last enhancements on evolutionary algorithms include new multirecombinative approaches. Multiple Crossovers Per Couple (MCPC) allows multiple crossovers on the couple selected for mating and Multiple Crossovers on Multiple Parents (MCMP) do this but on a set of more than two parents. Techniques for preventing incest also help to avoid premature convergence. Issues on representation and operators influence efficiency and efficacy of the algorithm. The present paper shows how enhanced evolutionary approaches, can solve the Job Shop Scheduling Problem (JSSP) in single and multiobjective optimization.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0950-7051
1872-7409
DOI:10.1016/S0950-7051(01)00117-4