Cross validation for uncertain autoregressive model

Uncertain time series models have been investigated to predict future values based on imprecise observations. The existing researches focus on how to estimate unknown parameters in the uncertain time series model without considering how to determine the lag order. This paper proposes three types of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in statistics. Simulation and computation Jg. 51; H. 8; S. 4715 - 4726
Hauptverfasser: Liu, Zhe, Yang, Xiangfeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Taylor & Francis 03.08.2022
Taylor & Francis Ltd
Schlagworte:
ISSN:0361-0918, 1532-4141
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uncertain time series models have been investigated to predict future values based on imprecise observations. The existing researches focus on how to estimate unknown parameters in the uncertain time series model without considering how to determine the lag order. This paper proposes three types of cross validation methods, i.e. fixed origin cross validation, rolling origin cross validation, and rolling window cross validation to choose the lag order considering the model's prediction ability, and derives corresponding calculation methods under the framework of uncertainty theory. A numerical example and a real data example illustrate our methods in detail.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0361-0918
1532-4141
DOI:10.1080/03610918.2020.1747077