On the estimation of Bell regression model using ridge estimator

The bell regression is used, when the response variable is in the form of counts with over dispersion. The bell regression coefficients are generally estimated using the maximum likelihood estimator (MLE). It is known that the performance of the traditional MLE is very sensitive to multicollinearity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in statistics. Simulation and computation Jg. 52; H. 3; S. 854 - 867
Hauptverfasser: Amin, Muhammad, Akram, Muhammad Nauman, Majid, Abdul
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Taylor & Francis 04.03.2023
Taylor & Francis Ltd
Schlagworte:
ISSN:0361-0918, 1532-4141
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bell regression is used, when the response variable is in the form of counts with over dispersion. The bell regression coefficients are generally estimated using the maximum likelihood estimator (MLE). It is known that the performance of the traditional MLE is very sensitive to multicollinearity. Therefore, we propose a Bell ridge regression (BRR) as a solution to the multicollinearity problems. For the assessment of BRR, we conduct a Monte Carlo simulation study to monitor the performance of the proposed estimator where the mean squared error (MSE) is considered as an evaluation criterion. Also, two real examples are included to show the superiority of the BRR estimator.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0361-0918
1532-4141
DOI:10.1080/03610918.2020.1870694