On the estimation of Bell regression model using ridge estimator

The bell regression is used, when the response variable is in the form of counts with over dispersion. The bell regression coefficients are generally estimated using the maximum likelihood estimator (MLE). It is known that the performance of the traditional MLE is very sensitive to multicollinearity...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications in statistics. Simulation and computation Ročník 52; číslo 3; s. 854 - 867
Hlavní autoři: Amin, Muhammad, Akram, Muhammad Nauman, Majid, Abdul
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Taylor & Francis 04.03.2023
Taylor & Francis Ltd
Témata:
ISSN:0361-0918, 1532-4141
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The bell regression is used, when the response variable is in the form of counts with over dispersion. The bell regression coefficients are generally estimated using the maximum likelihood estimator (MLE). It is known that the performance of the traditional MLE is very sensitive to multicollinearity. Therefore, we propose a Bell ridge regression (BRR) as a solution to the multicollinearity problems. For the assessment of BRR, we conduct a Monte Carlo simulation study to monitor the performance of the proposed estimator where the mean squared error (MSE) is considered as an evaluation criterion. Also, two real examples are included to show the superiority of the BRR estimator.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0361-0918
1532-4141
DOI:10.1080/03610918.2020.1870694