A two-stage path planning approach for multiple car-like robots based on PH curves and a modified harmony search algorithm

In this article, collision-avoidance path planning for multiple car-like robots with variable motion is formulated as a two-stage objective optimization problem minimizing both the total length of all paths and the task's completion time. Accordingly, a new approach based on Pythagorean Hodogra...

Full description

Saved in:
Bibliographic Details
Published in:Engineering optimization Vol. 49; no. 11; pp. 1995 - 2012
Main Authors: Zeng, Wenhui, Yi, Jin, Rao, Xiao, Zheng, Yun
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 02.11.2017
Taylor & Francis Ltd
Subjects:
ISSN:0305-215X, 1029-0273
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, collision-avoidance path planning for multiple car-like robots with variable motion is formulated as a two-stage objective optimization problem minimizing both the total length of all paths and the task's completion time. Accordingly, a new approach based on Pythagorean Hodograph (PH) curves and Modified Harmony Search algorithm is proposed to solve the two-stage path-planning problem subject to kinematic constraints such as velocity, acceleration, and minimum turning radius. First, a method of path planning based on PH curves for a single robot is proposed. Second, a mathematical model of the two-stage path-planning problem for multiple car-like robots with variable motion subject to kinematic constraints is constructed that the first-stage minimizes the total length of all paths and the second-stage minimizes the task's completion time. Finally, a modified harmony search algorithm is applied to solve the two-stage optimization problem. A set of experiments demonstrate the effectiveness of the proposed approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0305-215X
1029-0273
DOI:10.1080/0305215X.2017.1281610