A two-stage path planning approach for multiple car-like robots based on PH curves and a modified harmony search algorithm

In this article, collision-avoidance path planning for multiple car-like robots with variable motion is formulated as a two-stage objective optimization problem minimizing both the total length of all paths and the task's completion time. Accordingly, a new approach based on Pythagorean Hodogra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering optimization Ročník 49; číslo 11; s. 1995 - 2012
Hlavní autoři: Zeng, Wenhui, Yi, Jin, Rao, Xiao, Zheng, Yun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 02.11.2017
Taylor & Francis Ltd
Témata:
ISSN:0305-215X, 1029-0273
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, collision-avoidance path planning for multiple car-like robots with variable motion is formulated as a two-stage objective optimization problem minimizing both the total length of all paths and the task's completion time. Accordingly, a new approach based on Pythagorean Hodograph (PH) curves and Modified Harmony Search algorithm is proposed to solve the two-stage path-planning problem subject to kinematic constraints such as velocity, acceleration, and minimum turning radius. First, a method of path planning based on PH curves for a single robot is proposed. Second, a mathematical model of the two-stage path-planning problem for multiple car-like robots with variable motion subject to kinematic constraints is constructed that the first-stage minimizes the total length of all paths and the second-stage minimizes the task's completion time. Finally, a modified harmony search algorithm is applied to solve the two-stage optimization problem. A set of experiments demonstrate the effectiveness of the proposed approach.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0305-215X
1029-0273
DOI:10.1080/0305215X.2017.1281610