Input-to-state stability and integral input-to-state stability of non-autonomous infinite-dimensional systems
In this paper, we provide Lyapunov-based tools to establish input-to-state stability (ISS) and integral input-to-state stability (iISS) for non-autonomous infinite-dimensional systems. We prove that for a class of admissible inputs the existence of an ISS Lyapunov function implies the ISS of a syste...
Gespeichert in:
| Veröffentlicht in: | International journal of systems science Jg. 52; H. 10; S. 2100 - 2113 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Taylor & Francis
27.07.2021
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 0020-7721, 1464-5319 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we provide Lyapunov-based tools to establish input-to-state stability (ISS) and integral input-to-state stability (iISS) for non-autonomous infinite-dimensional systems. We prove that for a class of admissible inputs the existence of an ISS Lyapunov function implies the ISS of a system in Banach spaces. Furthermore, it is shown that uniform global asymptotic stability is equivalent to their integral input-to-state stability for non-autonomous generalised bilinear systems over Banach spaces. The Lyapunov method is provided to be very useful for both linear and nonlinear tools including partial differential equations (PDEs). In addition, we present a method for construction of iISS Lyapunov function in Hilbert spaces. Finally, two examples are given to verify the effectiveness of the proposed scheme. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0020-7721 1464-5319 |
| DOI: | 10.1080/00207721.2021.1879306 |