A new cross-domain prediction model of air pollutant concentration based on secure federated learning and optimized LSTM neural network

As air pollution worsens, the fast prediction of air pollutant concentration becomes increasingly important for public health. This paper proposes a new cross-domain prediction model of air pollutant concentration based on federated learning (FL), differential privacy laplace mechanism (DPLA) and lo...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international Vol. 30; no. 2; pp. 5103 - 5125
Main Authors: Huang, Guangqiu, Zhao, Xixuan, Lu, Qiuqin
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2023
Springer Nature B.V
Subjects:
ISSN:0944-1344, 1614-7499, 1614-7499
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As air pollution worsens, the fast prediction of air pollutant concentration becomes increasingly important for public health. This paper proposes a new cross-domain prediction model of air pollutant concentration based on federated learning (FL), differential privacy laplace mechanism (DPLA) and long and short-term memory network optimized by sparrow search algorithm (SSA-LSTM), named FL-DPLA-SSA-LSTM. Firstly, with FL, SSA-LSTM is used as local training model for each city and predicts air pollutant concentration. Secondly, DPLA is used to add noise to the local model parameters, which can protect local data security. Then, the global model is updated by using the federated averaging algorithm (FedAvg). Lastly, FL is used to share global model for all cities, which can safely and quickly cross-domain predict air pollutant concentration. For data set, it is taken from hourly air pollutants and meteorological data from 12 cities in the Fenhe River and Weihe River Plains in China in 2020. The experimental results show that the prediction performance of the proposed model is significantly better than all comparison models. FedAvg updating with local model parameters with DPLA noise has little effect on the performance of the global model and even exceeds that of the global model. The calculation time of FL-DPLA-SSA-LSTM model is reduced by 99.95% compared with that of not using FL-DPLA machine learning model. It is proved that the model is high sharing and high safety, which greatly improves the training efficiency and has better generalization ability. It is significant for joint air pollution prevention and control and environmental protection.
AbstractList As air pollution worsens, the fast prediction of air pollutant concentration becomes increasingly important for public health. This paper proposes a new cross-domain prediction model of air pollutant concentration based on federated learning (FL), differential privacy laplace mechanism (DPLA) and long and short-term memory network optimized by sparrow search algorithm (SSA-LSTM), named FL-DPLA-SSA-LSTM. Firstly, with FL, SSA-LSTM is used as local training model for each city and predicts air pollutant concentration. Secondly, DPLA is used to add noise to the local model parameters, which can protect local data security. Then, the global model is updated by using the federated averaging algorithm (FedAvg). Lastly, FL is used to share global model for all cities, which can safely and quickly cross-domain predict air pollutant concentration. For data set, it is taken from hourly air pollutants and meteorological data from 12 cities in the Fenhe River and Weihe River Plains in China in 2020. The experimental results show that the prediction performance of the proposed model is significantly better than all comparison models. FedAvg updating with local model parameters with DPLA noise has little effect on the performance of the global model and even exceeds that of the global model. The calculation time of FL-DPLA-SSA-LSTM model is reduced by 99.95% compared with that of not using FL-DPLA machine learning model. It is proved that the model is high sharing and high safety, which greatly improves the training efficiency and has better generalization ability. It is significant for joint air pollution prevention and control and environmental protection.As air pollution worsens, the fast prediction of air pollutant concentration becomes increasingly important for public health. This paper proposes a new cross-domain prediction model of air pollutant concentration based on federated learning (FL), differential privacy laplace mechanism (DPLA) and long and short-term memory network optimized by sparrow search algorithm (SSA-LSTM), named FL-DPLA-SSA-LSTM. Firstly, with FL, SSA-LSTM is used as local training model for each city and predicts air pollutant concentration. Secondly, DPLA is used to add noise to the local model parameters, which can protect local data security. Then, the global model is updated by using the federated averaging algorithm (FedAvg). Lastly, FL is used to share global model for all cities, which can safely and quickly cross-domain predict air pollutant concentration. For data set, it is taken from hourly air pollutants and meteorological data from 12 cities in the Fenhe River and Weihe River Plains in China in 2020. The experimental results show that the prediction performance of the proposed model is significantly better than all comparison models. FedAvg updating with local model parameters with DPLA noise has little effect on the performance of the global model and even exceeds that of the global model. The calculation time of FL-DPLA-SSA-LSTM model is reduced by 99.95% compared with that of not using FL-DPLA machine learning model. It is proved that the model is high sharing and high safety, which greatly improves the training efficiency and has better generalization ability. It is significant for joint air pollution prevention and control and environmental protection.
As air pollution worsens, the fast prediction of air pollutant concentration becomes increasingly important for public health. This paper proposes a new cross-domain prediction model of air pollutant concentration based on federated learning (FL), differential privacy laplace mechanism (DPLA) and long and short-term memory network optimized by sparrow search algorithm (SSA-LSTM), named FL-DPLA-SSA-LSTM. Firstly, with FL, SSA-LSTM is used as local training model for each city and predicts air pollutant concentration. Secondly, DPLA is used to add noise to the local model parameters, which can protect local data security. Then, the global model is updated by using the federated averaging algorithm (FedAvg). Lastly, FL is used to share global model for all cities, which can safely and quickly cross-domain predict air pollutant concentration. For data set, it is taken from hourly air pollutants and meteorological data from 12 cities in the Fenhe River and Weihe River Plains in China in 2020. The experimental results show that the prediction performance of the proposed model is significantly better than all comparison models. FedAvg updating with local model parameters with DPLA noise has little effect on the performance of the global model and even exceeds that of the global model. The calculation time of FL-DPLA-SSA-LSTM model is reduced by 99.95% compared with that of not using FL-DPLA machine learning model. It is proved that the model is high sharing and high safety, which greatly improves the training efficiency and has better generalization ability. It is significant for joint air pollution prevention and control and environmental protection.
Author Lu, Qiuqin
Zhao, Xixuan
Huang, Guangqiu
Author_xml – sequence: 1
  givenname: Guangqiu
  surname: Huang
  fullname: Huang, Guangqiu
  email: huangnan93@163.com
  organization: School of Management, Xi’an University of Architecture and Technology
– sequence: 2
  givenname: Xixuan
  orcidid: 0000-0003-3910-9014
  surname: Zhao
  fullname: Zhao, Xixuan
  email: 2694155379@qq.com
  organization: School of Management, Xi’an University of Architecture and Technology
– sequence: 3
  givenname: Qiuqin
  surname: Lu
  fullname: Lu, Qiuqin
  organization: School of Management, Xi’an University of Architecture and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35974279$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9uFSEUh4mpsbfVF3BhSNx0g_JvhmHZNFZNbuPCdk0Y5tBQZ2CEmTT6Ar629N5Wky7a1SGH78cBviN0EFMEhN4y-oFRqj4WxkTTEso54Vw2krQv0Ia1TBIltT5AG6qlJExIeYiOSrmhlFPN1St0KBqtJFd6g_6c4gi32OVUChnSZEPEc4YhuCWkiKc0wIiTxzZkPKdxXBcbF-xSdBCXbHdQbwsMuC4KuDUD9jBA3aq9EWyOIV5jGyswL2EKv2t7-_3yoo5dsx1rWW5T_vEavfR2LPDmvh6jq_NPl2dfyPbb569np1vihOgWojttNfVtw3QvOue5tD0IrxVYJrwHIZRqlReesYExJ7kVPbfSDpq7tul6cYxO9ufOOf1coSxmCsXBONoIaS2Gd51qRf1d9jyqqJBMU6Er-v4RepPWHOtDKqWY7LRs76h399TaTzCYOYfJ5l_mwUYF-B7Y6cjg_yGMmjvlZq_cVOVmp9y0NdQ9Crmw7MRUP2F8Oir20VLnxGvI_6_9ROovo8_AoQ
CitedBy_id crossref_primary_10_1016_j_ecoenv_2024_116532
crossref_primary_10_1371_journal_pone_0305665
crossref_primary_10_1016_j_cie_2024_110477
crossref_primary_10_3390_ani14142021
crossref_primary_10_3390_computers14080321
crossref_primary_10_1038_s41598_025_00911_9
crossref_primary_10_3390_a15110434
crossref_primary_10_1080_10589759_2025_2512557
crossref_primary_10_3390_su15129713
crossref_primary_10_1016_j_jhazmat_2023_133099
crossref_primary_10_3390_su151813951
crossref_primary_10_1007_s10661_024_12939_x
crossref_primary_10_1016_j_jclepro_2023_138676
Cites_doi 10.1016/j.scitotenv.2019.05.186
10.1016/j.apr.2018.02.006
10.1016/j.tej.2020.106883
10.1289/EHP4595
10.1007/s40747-021-00435-5
10.1088/1742-6596/1192/1/012010
10.23919/CJEE.2019.000025
10.3390/su132112071
10.1126/science.1127647
10.1016/j.envpol.2022.118932
10.3390/su122310090
10.1109/ACCESS.2020.3029828
10.1007/s12145-021-00618-1
10.1016/j.envpol.2017.08.114
10.1016/j.atmosenv.2011.08.066
10.4209/aaqr.2019.08.0408
10.1016/j.apr.2020.09.003
10.1371/journal.pone.0212320
10.3390/atmos12121626
10.1016/j.chemosphere.2021.133124
10.3390/s21092993
10.1016/j.physa.2019.123799
10.1016/j.rse.2016.07.015
10.1080/21642583.2019.1708830
10.1016/j.knosys.2020.106002
10.1016/j.atmosenv.2011.03.074
10.1016/j.chemosphere.2020.126735
10.3390/s21041235
10.1016/j.apr.2019.09.009
10.1109/TSG.2017.2753802
10.1088/1755-1315/651/4/042068
10.1080/0194262X.2020.1859046
10.5194/isprs-annals-IV-4-W2-15-2017
10.1109/IJCNN.1992.227046
10.1145/2971648.2971725
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-022-22454-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Proquest Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest Health & Medical Collection
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
Public Health
EISSN 1614-7499
EndPage 5125
ExternalDocumentID 35974279
10_1007_s11356_022_22454_6
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No. 71874134
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: No. 71874134
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c338t-989a90f6519b38cf24abe3f97ea13ffe337767f3f11d11c42a3b2a4ad92c658b3
IEDL.DBID M2P
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000841108800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0944-1344
1614-7499
IngestDate Thu Oct 02 05:26:59 EDT 2025
Fri Sep 05 08:21:02 EDT 2025
Tue Dec 02 16:06:59 EST 2025
Mon Jul 21 06:03:11 EDT 2025
Tue Nov 18 21:42:58 EST 2025
Sat Nov 29 03:49:40 EST 2025
Fri Feb 21 02:44:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Sparrow search algorithm (SSA)
Differential privacy laplace mechanism (DPLA)
Air pollutant concentration prediction; Federated learning (FL)
LSTM neural network
Joint prevention and control
Language English
License 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-989a90f6519b38cf24abe3f97ea13ffe337767f3f11d11c42a3b2a4ad92c658b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3910-9014
PMID 35974279
PQID 2771489469
PQPubID 54208
PageCount 23
ParticipantIDs proquest_miscellaneous_2887630071
proquest_miscellaneous_2703419039
proquest_journals_2771489469
pubmed_primary_35974279
crossref_primary_10_1007_s11356_022_22454_6
crossref_citationtrail_10_1007_s11356_022_22454_6
springer_journals_10_1007_s11356_022_22454_6
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
2023-Jan
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Li, Peng, Yao (CR24) 2017; 231
Deng, Guo, Liu (CR11) 2019; 5
Maharani, Murfi (CR28) 2019; 1192
Wu, Yao, Li (CR40) 2016; 184
Shi, Zhang, Xu (CR35) 2022; 291
CR37
CR13
Ketu, Mishra (CR18) 2021; 7
CR12
Hinton, Salakhutdinov (CR16) 2006; 313
CR32
CR31
Kong, Dong, Jia (CR21) 2019; 10
CR30
Kloog, Koutrakis, Coull (CR20) 2011; 45
Cheng, Liu, Xu (CR8) 2019; 682
Arsov, Zdravevski, Lameski (CR2) 2021; 21
Kong, Zhang, Lv (CR22) 2020; 8
Govender, Sivakumar (CR15) 2020; 11
Liu, Yue, Xie (CR25) 2022; 300
Sethi, Mittal (CR34) 2021; 14
McMahan, Moore, Ramage (CR29) 2017; 54
Chen, Jin, Chai (CR5) 2021; 41
CR6
Braithwaite, Zhang, Kirkbride (CR4) 2019; 127
Wang, Li, Ho (CR38) 2021; 34
Liu, Yu, Sun (CR26) 2020; 201
Kim, Kim (CR19) 2019; 14
Zhang, Liu, Zhao (CR42) 2021; 12
Franceschi, Cobo, Figueredo (CR14) 2018; 9
Baker, Foley (CR3) 2011; 45
Hiwale, Phanasalkar, Kotecha (CR17) 2021; 40
Alomari, Katib, Albeshri (CR1) 2021; 21
Dai, Huang, Zeng (CR10) 2021; 13
Li, Shao, Sun (CR23) 2019; 2019
Ma, Yu, Qu (CR27) 2020; 20
Wang, Qiao, Zhang (CR39) 2020; 254
Xue, Shen (CR41) 2020; 8
Zhang, Zheng, Zhang (CR43) 2020; 36
Stan, Marmureanu, Marin (CR36) 2020; 545
Ragab, Abdulkadir, Aziz (CR33) 2020; 12
Chen (CR7) 2021; 651
Dai, Huang, Wang (CR9) 2021; 12
GE Hinton (22454_CR16) 2006; 313
JH Ma (22454_CR27) 2020; 20
D Maharani (22454_CR28) 2019; 1192
JK Sethi (22454_CR34) 2021; 14
22454_CR32
XH Cheng (22454_CR8) 2019; 682
X Li (22454_CR24) 2017; 231
22454_CR31
BH Chen (22454_CR5) 2021; 41
HB Dai (22454_CR9) 2021; 12
22454_CR30
22454_CR37
N Wang (22454_CR38) 2021; 34
PF Wang (22454_CR39) 2020; 254
22454_CR13
M Arsov (22454_CR2) 2021; 21
22454_CR12
ZM Kong (22454_CR22) 2020; 8
I Kloog (22454_CR20) 2011; 45
LK Shi (22454_CR35) 2022; 291
L Zhang (22454_CR42) 2021; 12
P Govender (22454_CR15) 2020; 11
Z Zhang (22454_CR43) 2020; 36
T Kim (22454_CR19) 2019; 14
F Franceschi (22454_CR14) 2018; 9
HW Liu (22454_CR25) 2022; 300
C Stan (22454_CR36) 2020; 545
S Ketu (22454_CR18) 2021; 7
JG Li (22454_CR23) 2019; 2019
MG Ragab (22454_CR33) 2020; 12
JS Wu (22454_CR40) 2016; 184
L Liu (22454_CR26) 2020; 201
22454_CR6
M Hiwale (22454_CR17) 2021; 40
WC Kong (22454_CR21) 2019; 10
I Braithwaite (22454_CR4) 2019; 127
HB Dai (22454_CR10) 2021; 13
JK Xue (22454_CR41) 2020; 8
KR Baker (22454_CR3) 2011; 45
Y Chen (22454_CR7) 2021; 651
W Deng (22454_CR11) 2019; 5
E Alomari (22454_CR1) 2021; 21
B McMahan (22454_CR29) 2017; 54
References_xml – volume: 682
  start-page: 541
  year: 2019
  end-page: 552
  ident: CR8
  article-title: Lidar data assimilation method based on CRTM and WRF-Chem models and its application in PM forecasts in Beijing
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.05.186
– volume: 9
  start-page: 912
  issue: 5
  year: 2018
  end-page: 922
  ident: CR14
  article-title: Discovering relationships and forecasting PM and PM concentrations in Bogotá, Colombia, using artificial neural networks, principal component analysis, and k-means clustering
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2018.02.006
– volume: 34
  start-page: 106883
  issue: 1
  year: 2021
  ident: CR38
  article-title: Distributed machine learning for energy trading in electric distribution system of the future
  publication-title: Electr J
  doi: 10.1016/j.tej.2020.106883
– volume: 127
  start-page: 126002
  issue: 12
  year: 2019
  ident: CR4
  article-title: Air pollution (particulate matter) exposure and associations with depression, anxiety, bipolar, psychosis and suicide risk: a systematic review and meta-analysis
  publication-title: Environ Health Persp
  doi: 10.1289/EHP4595
– volume: 7
  start-page: 2597
  issue: 5
  year: 2021
  end-page: 2615
  ident: CR18
  article-title: Scalable kernel-based SVM classification algorithm on imbalance air quality data for proficient healthcare
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-021-00435-5
– volume: 1192
  start-page: 012010
  issue: 1
  year: 2019
  ident: CR28
  article-title: Deep neural network for structured data—a case study of mortality rate prediction caused by air quality
  publication-title: J Phys Conf Seri
  doi: 10.1088/1742-6596/1192/1/012010
– volume: 5
  start-page: 33
  issue: 4
  year: 2019
  end-page: 39
  ident: CR11
  article-title: A missing power data filling method based on improved random forest algorithm
  publication-title: Chin J Electric Eng
  doi: 10.23919/CJEE.2019.000025
– volume: 41
  start-page: 817
  year: 2021
  end-page: 829
  ident: CR5
  article-title: Spatiotemporal distribution and correlation factors of PM concentrations in Zhejiang Province
  publication-title: Acta Sci Circumst
– volume: 13
  start-page: 12071
  issue: 21
  year: 2021
  ident: CR10
  article-title: PM Concentration prediction based on spatiotemporal feature selection using XGBoost-MSCNN-GA-LSTM
  publication-title: Sustainability
  doi: 10.3390/su132112071
– ident: CR37
– ident: CR12
– ident: CR30
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  ident: CR16
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 300
  start-page: 118932
  year: 2022
  ident: CR25
  article-title: Quantify the role of anthropogenic emission and meteorology on air pollution using machine learning approach: a case study of PM during the COVID-19 outbreak in Hubei Province, China
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2022.118932
– volume: 12
  start-page: 10090
  issue: 23
  year: 2020
  ident: CR33
  article-title: A novel one-dimensional CNN with exponential adaptive gradients for air pollution index prediction
  publication-title: Sustainability
  doi: 10.3390/su122310090
– volume: 8
  start-page: 185373
  year: 2020
  end-page: 185383
  ident: CR22
  article-title: Multimodal feature extraction and fusion deep neural networks for short-term load forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029828
– volume: 14
  start-page: 1777
  issue: 4
  year: 2021
  end-page: 1786
  ident: CR34
  article-title: An efficient correlation based adaptive LASSO regression method for air quality index prediction
  publication-title: Earth Sci Inform
  doi: 10.1007/s12145-021-00618-1
– volume: 231
  start-page: 997
  year: 2017
  end-page: 1004
  ident: CR24
  article-title: Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2017.08.114
– ident: CR6
– volume: 45
  start-page: 6267
  issue: 35
  year: 2011
  end-page: 6275
  ident: CR20
  article-title: Assessing temporally and spatially resolved PM exposures for epidemiological studies using satellite aerosol optical depth measurements
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2011.08.066
– volume: 20
  start-page: 128
  issue: 1
  year: 2020
  end-page: 138
  ident: CR27
  article-title: Application of the XGBoost machine learning method in PM prediction: a case study of Shanghai
  publication-title: Aerosol Air Qual Res
  doi: 10.4209/aaqr.2019.08.0408
– volume: 12
  start-page: 328
  issue: 1
  year: 2021
  end-page: 339
  ident: CR42
  article-title: Air quality predictions with a semi-supervised bidirectional LSTM neural network
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2020.09.003
– volume: 14
  start-page: e0212320
  issue: 2
  year: 2019
  ident: CR19
  article-title: Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0212320
– volume: 12
  start-page: 1626
  issue: 12
  year: 2021
  ident: CR9
  article-title: Prediction of air pollutant concentration based on one-dimensional multi-scale CNN-LSTM considering spatial-temporal characteristics: a case study of Xi’an, China
  publication-title: Atmosphere
  doi: 10.3390/atmos12121626
– volume: 291
  start-page: 133124
  year: 2022
  ident: CR35
  article-title: A balanced social LSTM for PM concentration prediction based on local spatiotemporal correlation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.133124
– volume: 21
  start-page: 2993
  issue: 9
  year: 2021
  ident: CR1
  article-title: Iktishaf+: a big data tool with automatic labeling for road traffic social sensing and event detection using distributed machine learning
  publication-title: Sensors
  doi: 10.3390/s21092993
– volume: 545
  start-page: 123799
  year: 2020
  ident: CR36
  article-title: Investigation of multifractal cross-correlation surfaces of Hurst exponents for some atmospheric pollutants
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.123799
– volume: 184
  start-page: 316
  year: 2016
  end-page: 328
  ident: CR40
  article-title: VIIRS-based remote sensing estimation of ground-level PM concentrations in Beijing–Tianjin–Hebei: a spatiotemporal statistical model
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2016.07.015
– volume: 54
  start-page: 1273
  year: 2017
  end-page: 1282
  ident: CR29
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc Int Conf Artif Intell Stat AISTATS
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  end-page: 34
  ident: CR41
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst Sci Control Eng
  doi: 10.1080/21642583.2019.1708830
– volume: 201
  start-page: 106002
  year: 2020
  ident: CR26
  article-title: Online job scheduling for distributed machine learning in optical circuit switch networks
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.106002
– volume: 45
  start-page: 3758
  issue: 22
  year: 2011
  end-page: 3767
  ident: CR3
  article-title: A nonlinear regression model estimating single source concentrations of primary and secondarily formed PM
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2011.03.074
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 9
  ident: CR23
  article-title: A DBN-based deep neural network model with multitask learning for online air quality prediction
  publication-title: J Control Sci Eng
– volume: 254
  start-page: 126735
  year: 2020
  ident: CR39
  article-title: Modeling PM and O3 with aerosol feedbacks using WRF/Chem over the Sichuan Basin, southwestern China
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126735
– ident: CR31
– ident: CR13
– volume: 21
  start-page: 1235
  issue: 4
  year: 2021
  ident: CR2
  article-title: Multi-horizon air pollution forecasting with deep neural networks
  publication-title: Sensors
  doi: 10.3390/s21041235
– ident: CR32
– volume: 36
  start-page: 96
  year: 2020
  end-page: 103
  ident: CR43
  article-title: The survey and influence factors of air pollution in Ningbo
  publication-title: Environ Monit China
– volume: 11
  start-page: 40
  issue: 1
  year: 2020
  end-page: 56
  ident: CR15
  article-title: Application of k-means and hierarchical clustering techniques for analysis of air pollution: a review (1980–2019)
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2019.09.009
– volume: 10
  start-page: 841
  issue: 1
  year: 2019
  end-page: 851
  ident: CR21
  article-title: Short-term residential load forecasting based on LSTM recurrent neural network
  publication-title: IEEE T Smart Grid
  doi: 10.1109/TSG.2017.2753802
– volume: 651
  start-page: 042068
  issue: 4
  year: 2021
  ident: CR7
  article-title: Air pollution analysis based on PCA and entropy weight method
  publication-title: IOP Conf Ser Earth Environ Sci
  doi: 10.1088/1755-1315/651/4/042068
– volume: 40
  start-page: 190
  issue: 2
  year: 2021
  end-page: 213
  ident: CR17
  article-title: Using blockchain and distributed machine learning to manage decentralized but trustworthy disease data
  publication-title: Sci Technol Libr
  doi: 10.1080/0194262X.2020.1859046
– volume: 10
  start-page: 841
  issue: 1
  year: 2019
  ident: 22454_CR21
  publication-title: IEEE T Smart Grid
  doi: 10.1109/TSG.2017.2753802
– volume: 254
  start-page: 126735
  year: 2020
  ident: 22454_CR39
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126735
– volume: 21
  start-page: 2993
  issue: 9
  year: 2021
  ident: 22454_CR1
  publication-title: Sensors
  doi: 10.3390/s21092993
– volume: 21
  start-page: 1235
  issue: 4
  year: 2021
  ident: 22454_CR2
  publication-title: Sensors
  doi: 10.3390/s21041235
– volume: 11
  start-page: 40
  issue: 1
  year: 2020
  ident: 22454_CR15
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2019.09.009
– volume: 7
  start-page: 2597
  issue: 5
  year: 2021
  ident: 22454_CR18
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-021-00435-5
– volume: 14
  start-page: 1777
  issue: 4
  year: 2021
  ident: 22454_CR34
  publication-title: Earth Sci Inform
  doi: 10.1007/s12145-021-00618-1
– volume: 5
  start-page: 33
  issue: 4
  year: 2019
  ident: 22454_CR11
  publication-title: Chin J Electric Eng
  doi: 10.23919/CJEE.2019.000025
– ident: 22454_CR31
– ident: 22454_CR12
– volume: 9
  start-page: 912
  issue: 5
  year: 2018
  ident: 22454_CR14
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2018.02.006
– volume: 14
  start-page: e0212320
  issue: 2
  year: 2019
  ident: 22454_CR19
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0212320
– volume: 45
  start-page: 3758
  issue: 22
  year: 2011
  ident: 22454_CR3
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2011.03.074
– ident: 22454_CR37
– volume: 34
  start-page: 106883
  issue: 1
  year: 2021
  ident: 22454_CR38
  publication-title: Electr J
  doi: 10.1016/j.tej.2020.106883
– volume: 8
  start-page: 185373
  year: 2020
  ident: 22454_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029828
– ident: 22454_CR13
  doi: 10.5194/isprs-annals-IV-4-W2-15-2017
– volume: 184
  start-page: 316
  year: 2016
  ident: 22454_CR40
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2016.07.015
– ident: 22454_CR30
  doi: 10.1109/IJCNN.1992.227046
– volume: 2019
  start-page: 1
  year: 2019
  ident: 22454_CR23
  publication-title: J Control Sci Eng
– volume: 13
  start-page: 12071
  issue: 21
  year: 2021
  ident: 22454_CR10
  publication-title: Sustainability
  doi: 10.3390/su132112071
– volume: 231
  start-page: 997
  year: 2017
  ident: 22454_CR24
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2017.08.114
– volume: 12
  start-page: 328
  issue: 1
  year: 2021
  ident: 22454_CR42
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2020.09.003
– ident: 22454_CR32
– volume: 682
  start-page: 541
  year: 2019
  ident: 22454_CR8
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.05.186
– volume: 40
  start-page: 190
  issue: 2
  year: 2021
  ident: 22454_CR17
  publication-title: Sci Technol Libr
  doi: 10.1080/0194262X.2020.1859046
– volume: 651
  start-page: 042068
  issue: 4
  year: 2021
  ident: 22454_CR7
  publication-title: IOP Conf Ser Earth Environ Sci
  doi: 10.1088/1755-1315/651/4/042068
– volume: 12
  start-page: 10090
  issue: 23
  year: 2020
  ident: 22454_CR33
  publication-title: Sustainability
  doi: 10.3390/su122310090
– volume: 45
  start-page: 6267
  issue: 35
  year: 2011
  ident: 22454_CR20
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2011.08.066
– volume: 545
  start-page: 123799
  year: 2020
  ident: 22454_CR36
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.123799
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: 22454_CR41
  publication-title: Syst Sci Control Eng
  doi: 10.1080/21642583.2019.1708830
– volume: 300
  start-page: 118932
  year: 2022
  ident: 22454_CR25
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2022.118932
– volume: 201
  start-page: 106002
  year: 2020
  ident: 22454_CR26
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.106002
– volume: 41
  start-page: 817
  year: 2021
  ident: 22454_CR5
  publication-title: Acta Sci Circumst
– volume: 20
  start-page: 128
  issue: 1
  year: 2020
  ident: 22454_CR27
  publication-title: Aerosol Air Qual Res
  doi: 10.4209/aaqr.2019.08.0408
– ident: 22454_CR6
  doi: 10.1145/2971648.2971725
– volume: 54
  start-page: 1273
  year: 2017
  ident: 22454_CR29
  publication-title: Proc Int Conf Artif Intell Stat AISTATS
– volume: 12
  start-page: 1626
  issue: 12
  year: 2021
  ident: 22454_CR9
  publication-title: Atmosphere
  doi: 10.3390/atmos12121626
– volume: 127
  start-page: 126002
  issue: 12
  year: 2019
  ident: 22454_CR4
  publication-title: Environ Health Persp
  doi: 10.1289/EHP4595
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 22454_CR16
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 36
  start-page: 96
  year: 2020
  ident: 22454_CR43
  publication-title: Environ Monit China
– volume: 1192
  start-page: 012010
  issue: 1
  year: 2019
  ident: 22454_CR28
  publication-title: J Phys Conf Seri
  doi: 10.1088/1742-6596/1192/1/012010
– volume: 291
  start-page: 133124
  year: 2022
  ident: 22454_CR35
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.133124
SSID ssj0020927
Score 2.42991
Snippet As air pollution worsens, the fast prediction of air pollutant concentration becomes increasingly important for public health. This paper proposes a new...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5103
SubjectTerms air
air pollutants
Air Pollutants - analysis
Air pollution
Air Pollution - analysis
Algorithms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
China
data collection
Domains
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental Monitoring - methods
Environmental protection
Environmental science
Federated learning
Learning
Machine learning
Mathematical models
memory
Meteorological data
Neural networks
Neural Networks, Computer
Outdoor air quality
Parameters
Passeriformes
Pollutants
Pollution abatement
pollution control
Pollution prevention
prediction
Prediction models
Public health
Research Article
Rivers
Search algorithms
Short term memory
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VyoFLXzy6La2M1BtYimPn4SOqQD1QVAGtuEWOH2glNrvaLBz4A_3bnUmcXVUUJHqLkkk08mu-iT3fB_CF4orLXODBu5wrbxNuSoeLoTXS5FmGgK5TLTktzs7Kqyv9IxaFtcNp92FLslupV8VuQmZ0YDblGHYyxfM1eInhriTBhvOLX8s0K9G9UKtWigupVCyV-fc3_g5HDzDmg_3RLuycvP4_h9_Aqwgz2VE_Lt7CC9-8g53jVVUbPozTut2C30cM0TXrXORuOjHjhs3mtIVD3cY6tRw2DcyM52xG2sgkPcwsVTw2kXaXUTh0DC9a-oPvWSCWCgSyjkVhimtmGjTAJWoyvsfbpxeX3xnRaaIrTX8YfRt-nhxffv3Go0IDt5jaLrgutdFJyBEG1rK0IVWm9jLowhshQ_BSEllQkEEIJ4RVqZF1apRxOrUIfWq5A-vNtPHvgVmEqoIKzw1maLag0j_MFX0ZkqSWWV2PQAwdVdlIX04qGjfViniZ2rvC9q669q7yERws35n15B1PWu8N_V_FidxWaVFgwqhVrkewv3yMU5D2VUzjp7dkkxArXiKfsimJ-o8A3Qh2-7G1dElSUpcW-PbhMJBWDjzu74fnmX-EzRQBWv_7aA_WF_Nb_wk27N1i3M4_d1PoD73CFYM
  priority: 102
  providerName: Springer Nature
Title A new cross-domain prediction model of air pollutant concentration based on secure federated learning and optimized LSTM neural network
URI https://link.springer.com/article/10.1007/s11356-022-22454-6
https://www.ncbi.nlm.nih.gov/pubmed/35974279
https://www.proquest.com/docview/2771489469
https://www.proquest.com/docview/2703419039
https://www.proquest.com/docview/2887630071
Volume 30
WOSCitedRecordID wos000841108800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 7WY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: M0C
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: PATMY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: M2P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RlgMS4lEopJTISNzAYr3e56lqo1QcmihqC4TTyutHFYnuhmzKgT_A32Zm10lUVeTCxdpde6WRxvZ8M_bMB_Ce7IqJjePOmoRHVgdcZQY3Q62kSuIYAV3LWnKejsfZdJpPfMCt8dcqV3tiu1GbWlOM_FOYpojcc_Tmjuc_ObFG0emqp9DYgT1ENoKudI3CydrhCvKOsjWPIi5kFPmkmS51TsiYrt-GHI1YHPHkrmG6hzbvnZS2Bujs6f-K_gyeeOjJTrq58hwe2GofDoabTDfs9Eu92YfHXUCPdXlKL-DPCUMEzlrhualv1Kxi8wUd85BqWcuow2rH1GzB5sSfTPTETFNWZOVL8zIymYbhQ0NRfsscVbJAsGuYJ6-4ZqrCAbiN3cx-4-fzy6sRo5KbKFrVXVh_CV_OhleDz9yzOHCN7u-S51mu8sAlCBVLmWkXRqq00uWpVUI6Z6WkgkJOOiGMEDoKlSxDFSmThxrhUSkPYLeqK_samEY4Kyg5XaEXp1NKD0R_0mYuCEoZl2UPxEqFhfYlzolp40exKc5Mai9Q7UWr9iLpwYf1P_OuwMfW0UcrFRd-sTfFRr89eLfuxmVKZy-qsvUtjQmocl4gt43JqDwggb4evOpm3VokSY5fmOLfH1fTcCPAv-U93C7vG3gUImjrQkpHsLtc3Nq38FD_Ws6aRR920m_fqZ2mbZthmw1EH_ZOh-PJBb6NgkG_XXLYXlx-_Qtjayvj
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxNBFD7UKlgQL9VqtOoI-qSDuzN7fRAp2tLSNBSM0Lft7Fwk0O7GbKroH_Df-Bs9Z2c3QYp564NvITsbhsk35zJnzvcBvCS_YmLjuLMm4ZHVAVeZQWOolVRJHGNA16qWDNPRKDs5yY_X4HffC0PXKnub2BpqU2s6I38r0hQj9xyzuffTr5xUo6i62ktoeFgc2h_fMWVr3h18xP_3lRB7u-MP-7xTFeAa07E5z7Nc5YFLMHQpZaadiFRppctTq0LpnJWSCG6cdGFowlBHQslSqEiZXGh016XE370G1yNiFqOrguJ4keAFuZeIzaOIhzKKuiYd36oXypiu-wqOTjOOePK3I7wU3V6qzLYOb-_O_7ZUd-F2F1qzHb8X7sGarTZha3fZyYcPO1PWbMItf2DJfB_Wffi1wzDDYO1icVOfq0nFpjMqYxF0WasYxGrH1GTGpqQPTfLLTFPXZ9VRDzMKCQzDDw1VMSxzxNSBwbxhnTjHF6YqHIBm-nzyE78efhofMaIUxalV_kL-A_h8JYu0BetVXdlHwDSG6yE13yvMUnVK7Y-YL9vMBUEp47IcQNhDptAdhTspiZwVS_JpglmBMCtamBXJAF4v3pl6ApOVo7d7SBWdMWuKJZ4G8GLxGM0Q1ZZUZesLGhMQM2AgV43JiP6QgtoBPPQoX0xJUmIrUnz7TQ_75QT-Pd_Hq-f7HG7uj4-GxfBgdPgENgQGqP74bBvW57ML-xRu6G_zSTN71m5kBqdXvR3-AD9RgfA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxNBFD7UKiKIl2prtOoI-qRDd2f2-iBS2gZLYyhYoW_r7FwkYHfTbKroH_A_-es8Z2c3QYp564NvITsbhsm5fGfO5QN4SX7FxMZxZ03CI6sDrjKDxlArqZI4RkDXspaM0vE4Oz3Nj9fgd98LQ2WVvU1sDbWpNd2R74g0ReSeYzS347qyiOP94bvpOScGKcq09nQaXkSO7I_vGL41bw_38b9-JcTw4GTvPe8YBrjG0GzO8yxXeeAShDGlzLQTkSqtdHlqVSids1LSsBsnXRiaMNSRULIUKlImFxpddynxd6_B9TRCt0llg8HeItgLck8Xm0cRD2UUdQ07vm0vlDGV_gqODjSOePK3U7yEdC9laVvnN7z7Px_bPbjTQW6263XkPqzZagM2D5YdfviwM3HNBtz2F5nM92c9gF-7DCMP1h4cN_WZmlRsOqP0Fok0a5mEWO2YmszYlHijiZaZaeoGrbqRxIyggmH4oaHshmWOJnggyDesI-34wlSFC9B8n01-4tejjycfGI0axa1VvlD_IXy6kkPahPWqruwjYBphfEhN-QqjV51SWyTG0TZzQVDKuCwHEPbiU-hutDsxjHwtlkOpSeQKFLmiFbkiGcDrxTtTP9hk5ertXryKzsg1xVK2BvBi8RjNE-WcVGXrC1oT0MTAQK5ak9FYRAK7A9jyEr_YkqSAV6T49pteBZYb-Pd-H6_e73O4iVpQjA7HR0_glkDc6m_VtmF9PruwT-GG_jafNLNnrU4z-HzV2vAHHKeKkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+cross-domain+prediction+model+of+air+pollutant+concentration+based+on+secure+federated+learning+and+optimized+LSTM+neural+network&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Huang%2C+Guangqiu&rft.au=Zhao%2C+Xixuan&rft.au=Lu%2C+Qiuqin&rft.date=2023-01-01&rft.issn=0944-1344&rft.volume=30&rft.issue=2+p.5103-5125&rft.spage=5103&rft.epage=5125&rft_id=info:doi/10.1007%2Fs11356-022-22454-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon