Observer-based gain scheduling path following control for autonomous electric vehicles subject to time delay
This paper presents a novel observer-based gain-scheduling path following control algorithm for autonomous electric vehicles subject to time delay. Firstly, the lateral dynamic model of the autonomous electric vehicle is constructed by a polytope with four vertices, in which the issues of the time-v...
Gespeichert in:
| Veröffentlicht in: | Vehicle system dynamics Jg. 60; H. 5; S. 1602 - 1626 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Abingdon
Taylor & Francis
04.05.2022
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 0042-3114, 1744-5159 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper presents a novel observer-based gain-scheduling path following control algorithm for autonomous electric vehicles subject to time delay. Firstly, the lateral dynamic model of the autonomous electric vehicle is constructed by a polytope with four vertices, in which the issues of the time-varying longitudinal velocity and nonlinear tyre dynamics are accurately described. Secondly, taking the time delay encountered in the process of signal transmission into consideration, the observer-based path following controller is proposed by using easily measured vehicle states. In the algorithm, the observer and controller gains are gain scheduled according to the actual longitudinal velocity. Thirdly, based on Lyapunov stability theory, an appropriate Lyapunov-Krasovskii functional is constructed to derive sufficient conditions of the controller, which is effective to ensure the asymptotical stability of the closed-loop path following error system with a guaranteed
performance. Specially, for ease of computation, the sufficient conditions of controller design are developed in terms of a set of linear matrix inequalities. Finally, numerical simulations are implemented to illustrate the efficiency and superiority of the proposed method in comparison with the existing method. |
|---|---|
| AbstractList | This paper presents a novel observer-based gain-scheduling path following control algorithm for autonomous electric vehicles subject to time delay. Firstly, the lateral dynamic model of the autonomous electric vehicle is constructed by a polytope with four vertices, in which the issues of the time-varying longitudinal velocity and nonlinear tyre dynamics are accurately described. Secondly, taking the time delay encountered in the process of signal transmission into consideration, the observer-based path following controller is proposed by using easily measured vehicle states. In the algorithm, the observer and controller gains are gain scheduled according to the actual longitudinal velocity. Thirdly, based on Lyapunov stability theory, an appropriate Lyapunov-Krasovskii functional is constructed to derive sufficient conditions of the controller, which is effective to ensure the asymptotical stability of the closed-loop path following error system with a guaranteed
performance. Specially, for ease of computation, the sufficient conditions of controller design are developed in terms of a set of linear matrix inequalities. Finally, numerical simulations are implemented to illustrate the efficiency and superiority of the proposed method in comparison with the existing method. This paper presents a novel observer-based gain-scheduling path following control algorithm for autonomous electric vehicles subject to time delay. Firstly, the lateral dynamic model of the autonomous electric vehicle is constructed by a polytope with four vertices, in which the issues of the time-varying longitudinal velocity and nonlinear tyre dynamics are accurately described. Secondly, taking the time delay encountered in the process of signal transmission into consideration, the observer-based path following controller is proposed by using easily measured vehicle states. In the algorithm, the observer and controller gains are gain scheduled according to the actual longitudinal velocity. Thirdly, based on Lyapunov stability theory, an appropriate Lyapunov–Krasovskii functional is constructed to derive sufficient conditions of the controller, which is effective to ensure the asymptotical stability of the closed-loop path following error system with a guaranteed performance. Specially, for ease of computation, the sufficient conditions of controller design are developed in terms of a set of linear matrix inequalities. Finally, numerical simulations are implemented to illustrate the efficiency and superiority of the proposed method in comparison with the existing method. |
| Author | Xie, Zhengchao Wong, Pak Kin Li, Panshuo Chu, Shaoqiang Li, Wenfeng Zhao, Jing |
| Author_xml | – sequence: 1 givenname: Shaoqiang surname: Chu fullname: Chu, Shaoqiang organization: South China University of Technology – sequence: 2 givenname: Zhengchao surname: Xie fullname: Xie, Zhengchao email: zxie@scut.edu.cn organization: South China University of Technology – sequence: 3 givenname: Pak Kin surname: Wong fullname: Wong, Pak Kin organization: University of Macau – sequence: 4 givenname: Panshuo orcidid: 0000-0003-3682-1698 surname: Li fullname: Li, Panshuo organization: Guangdong University of Technology – sequence: 5 givenname: Wenfeng surname: Li fullname: Li, Wenfeng organization: South China University of Technology – sequence: 6 givenname: Jing surname: Zhao fullname: Zhao, Jing email: jzhao@um.edu.mo organization: University of Macau |
| BookMark | eNqFkEtLAzEUhYNUsD5-ghBwPZpMkpkMbpTiCwrd6DpkkkybkiY1yVT6752hdeNCV5d7OOdc7ncOJj54A8A1RrcYcXSHEC0JxvS2ROUg8YpS3JyAKa4pLRhmzQRMR08xms7AeUprhBBBvJ4Ct2iTiTsTi1Ymo-FSWg-TWhndO-uXcCvzCnbBufA1rir4HIMblAhln4MPm9AnaJxROVoFd2ZllTMJpr5dDxrMAWa7MVAbJ_eX4LSTLpmr47wAH89P77PXYr54eZs9zgtFCM9FwxmW2FDetZrJihCmaqw1RXVTtYxr1DHe6QYRzZVmuG5VyTrW1oQYjCrSkAtwc-jdxvDZm5TFOvTRDydFWbGGElpzOrjuDy4VQ0rRdELZLLMdX5TWCYzEiFf84BUjXnHEO6TZr_Q22o2M-39zD4ec9QPEjfwK0WmR5d6F2EXplU2C_F3xDcCHlF0 |
| CitedBy_id | crossref_primary_10_1016_j_jorganchem_2025_123572 crossref_primary_10_1109_ACCESS_2025_3542557 crossref_primary_10_1016_j_conbuildmat_2025_141452 crossref_primary_10_1080_00423114_2024_2351574 crossref_primary_10_1155_jom_5570638 crossref_primary_10_1016_j_apm_2025_116103 crossref_primary_10_1109_ACCESS_2025_3536498 crossref_primary_10_3390_inorganics13030067 crossref_primary_10_1016_j_surfin_2025_105908 crossref_primary_10_1186_s10033_025_01294_8 crossref_primary_10_1109_TITS_2023_3236113 crossref_primary_10_1007_s12206_025_0236_z crossref_primary_10_1016_j_compeleceng_2024_109950 crossref_primary_10_3390_en16124561 crossref_primary_10_1002_pat_70112 crossref_primary_10_1080_00423114_2024_2437006 crossref_primary_10_1109_TIE_2022_3210544 crossref_primary_10_1038_s41598_025_08605_y crossref_primary_10_1109_TFUZZ_2022_3225683 crossref_primary_10_1007_s00202_025_03217_1 crossref_primary_10_1109_ACCESS_2024_3523704 crossref_primary_10_1002_rnc_70077 crossref_primary_10_1080_23335777_2024_2313998 crossref_primary_10_1177_09544070221147327 crossref_primary_10_1109_ACCESS_2025_3538863 crossref_primary_10_1109_TVT_2024_3479416 crossref_primary_10_1177_10775463241269789 crossref_primary_10_1016_j_rineng_2024_103867 crossref_primary_10_1109_ACCESS_2025_3543979 crossref_primary_10_1109_ACCESS_2025_3532949 crossref_primary_10_1631_FITEE_2300625 crossref_primary_10_1007_s10854_025_14411_z crossref_primary_10_1080_00423114_2025_2532179 crossref_primary_10_1007_s40815_023_01469_2 crossref_primary_10_1016_j_inoche_2025_113897 crossref_primary_10_1016_j_trb_2024_103026 crossref_primary_10_1080_00423114_2024_2373140 crossref_primary_10_1177_01423312251330765 |
| Cites_doi | 10.1016/j.automatica.2007.06.017 10.1016/j.mechatronics.2014.08.003 10.1016/j.arcontrol.2011.03.009 10.1016/j.ymssp.2018.09.011 10.3182/20140824-6-ZA-1003.01953 10.1109/TCST.2014.2298893 10.1002/asjc.1161 10.1016/j.automatica.2017.02.004 10.1177/0361198119855606 10.1109/TMECH.2019.2953330 10.1016/j.jfranklin.2017.07.006 10.1007/s00034-014-9860-z 10.1109/TITS.2016.2632710 10.1109/TIE.2018.2793253 10.1109/TITS.2015.2498157 10.1007/s12239-019-0028-5 10.1109/TCST.2008.924558 10.1109/TVT.2018.2850154 10.1109/TVT.2019.2945934 10.1016/j.jfranklin.2014.02.015 10.1109/TII.2018.2828125 10.1109/JAS.2017.7510811 10.1080/00423114.2016.1245424 10.1080/00207170110067116 10.1109/TIE.2019.2898599 10.1109/TVT.2013.2279843 10.1109/TVT.2019.2914027 10.1080/00207721.2013.791002 10.1080/00423114.2018.1475677 10.1016/j.ymssp.2018.05.059 10.1080/00423114.2013.879190 10.1016/j.conengprac.2018.04.007 10.1109/TVT.2019.2950219 10.1016/j.conengprac.2014.09.015 10.1016/j.mechatronics.2014.04.008 10.1016/j.jfranklin.2018.10.012 10.1109/TVT.2020.2974107 10.1016/j.ymssp.2020.106798 10.1109/TIE.2020.2970680 |
| ContentType | Journal Article |
| Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7TB 8FD FR3 |
| DOI | 10.1080/00423114.2020.1864419 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1744-5159 |
| EndPage | 1626 |
| ExternalDocumentID | 10_1080_00423114_2020_1864419 1864419 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 123 29Q 30N 4.4 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADMLS ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TAJZE TASJS TBQAZ TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7TB 8FD ADYSH FR3 |
| ID | FETCH-LOGICAL-c338t-9851a1e48fbd5a6335c71dd40796b58d0f58fd903d8cd517bc25f5b733e106393 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604385100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0042-3114 |
| IngestDate | Mon Jul 14 08:16:53 EDT 2025 Sat Nov 29 02:27:26 EST 2025 Tue Nov 18 21:00:41 EST 2025 Mon Oct 20 23:48:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-9851a1e48fbd5a6335c71dd40796b58d0f58fd903d8cd517bc25f5b733e106393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3682-1698 |
| PQID | 2659434784 |
| PQPubID | 2045084 |
| PageCount | 25 |
| ParticipantIDs | crossref_primary_10_1080_00423114_2020_1864419 informaworld_taylorfrancis_310_1080_00423114_2020_1864419 proquest_journals_2659434784 crossref_citationtrail_10_1080_00423114_2020_1864419 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-04 |
| PublicationDateYYYYMMDD | 2022-05-04 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Vehicle system dynamics |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0017 CIT0039 CIT0040 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Dahmani H (CIT0019) 2016; 24 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0015 doi: 10.1016/j.automatica.2007.06.017 – ident: CIT0014 doi: 10.1016/j.mechatronics.2014.08.003 – ident: CIT0035 doi: 10.1016/j.arcontrol.2011.03.009 – ident: CIT0005 doi: 10.1016/j.ymssp.2018.09.011 – ident: CIT0006 doi: 10.3182/20140824-6-ZA-1003.01953 – volume: 24 start-page: 636 year: 2016 ident: CIT0019 publication-title: IEEE Trans Control Syst Technol – ident: CIT0029 doi: 10.1109/TCST.2014.2298893 – ident: CIT0031 doi: 10.1002/asjc.1161 – ident: CIT0034 doi: 10.1016/j.automatica.2017.02.004 – ident: CIT0003 doi: 10.1177/0361198119855606 – ident: CIT0018 doi: 10.1109/TMECH.2019.2953330 – ident: CIT0027 doi: 10.1016/j.jfranklin.2017.07.006 – ident: CIT0036 doi: 10.1007/s00034-014-9860-z – ident: CIT0001 doi: 10.1109/TITS.2016.2632710 – ident: CIT0020 doi: 10.1109/TIE.2018.2793253 – ident: CIT0023 doi: 10.1109/TITS.2015.2498157 – ident: CIT0030 doi: 10.1007/s12239-019-0028-5 – ident: CIT0013 doi: 10.1109/TCST.2008.924558 – ident: CIT0022 doi: 10.1109/TVT.2018.2850154 – ident: CIT0008 doi: 10.1109/TVT.2019.2945934 – ident: CIT0039 doi: 10.1016/j.jfranklin.2014.02.015 – ident: CIT0017 doi: 10.1109/TII.2018.2828125 – ident: CIT0016 doi: 10.1109/JAS.2017.7510811 – ident: CIT0026 doi: 10.1080/00423114.2016.1245424 – ident: CIT0040 doi: 10.1080/00207170110067116 – ident: CIT0004 doi: 10.1109/TIE.2019.2898599 – ident: CIT0032 doi: 10.1109/TVT.2013.2279843 – ident: CIT0009 doi: 10.1109/TVT.2019.2914027 – ident: CIT0038 doi: 10.1080/00207721.2013.791002 – ident: CIT0028 doi: 10.1080/00423114.2018.1475677 – ident: CIT0021 doi: 10.1016/j.ymssp.2018.05.059 – ident: CIT0024 doi: 10.1080/00423114.2013.879190 – ident: CIT0010 doi: 10.1016/j.conengprac.2018.04.007 – ident: CIT0011 doi: 10.1109/TVT.2019.2950219 – ident: CIT0007 doi: 10.1016/j.conengprac.2014.09.015 – ident: CIT0025 doi: 10.1016/j.mechatronics.2014.04.008 – ident: CIT0033 doi: 10.1016/j.jfranklin.2018.10.012 – ident: CIT0012 doi: 10.1109/TVT.2020.2974107 – ident: CIT0037 doi: 10.1016/j.ymssp.2020.106798 – ident: CIT0002 doi: 10.1109/TIE.2020.2970680 |
| SSID | ssj0003087 |
| Score | 2.5040233 |
| Snippet | This paper presents a novel observer-based gain-scheduling path following control algorithm for autonomous electric vehicles subject to time delay. Firstly,... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1602 |
| SubjectTerms | Algorithms Apexes Autonomous electric vehicle Control algorithms Control systems design Control theory Controllers Dynamic models Electric vehicles Gain scheduling Linear matrix inequalities Mathematical analysis Nonlinear dynamics observer path following Signal processing Signal transmission time delay Time lag Trajectory planning |
| Title | Observer-based gain scheduling path following control for autonomous electric vehicles subject to time delay |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00423114.2020.1864419 https://www.proquest.com/docview/2659434784 |
| Volume | 60 |
| WOSCitedRecordID | wos000604385100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1744-5159 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003087 issn: 0042-3114 databaseCode: TFW dateStart: 19720501 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0ShIA-sgSaOE2dEiIoBFYYC3SI7jqFSlaI8ivj33CVO1QqhDjDG0lnR-ex76O77CLmMjJbgSLXD-p50_NBTTiQldyTcpVC6furWdciXh3A4FONx9GS7CQvbVok5tGmAIuq3Gi-3VEXbEXdd93JAHA_ZnQdLAl06jvCB60cOg9HgdfEWI95dO4SCIu0Mz2-7rHinFezSH2917YAGu__w63tkx0af9KYxl32ykWYHZHsJk_CQTB8VFmrT3EEHp-mbnGQUUmBwSTi5TpHCmBqwntknftpWd1jJqaxKHJGYVQVt2HUmCZ2n73XjHS0qhSUfWs4o8tlTRKf8OiLPg7vR7b1jKRmcBHLZ0okgQJNu6gujNJcBYzwJXa0hK4wCxYXuGy6MjvoMSZG4G6rE44arkDE4dAiG2DHpZLMsPSEUfGYQ-DrUQiSQAyncwJVeJJUCTQnWJX57FHFi8cqRNmMauwtY00aZMSoztsrskquF2EcD2LFOIFo-57isKyWmoTWJ2RrZXmsUsb37RewFHEH3QuGf_mHrM7Ll4aQF9lb6PdIp8yo9J5vJvJwU-UVt5d--J_dh |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAEH3ojBgBy4FtamaZMjQkxDjHEZsFuUNC1Mmja0dUP8e-w-pk0I7QDHRnJUOU4-27I_E3IpE6sBSK3D6p52_NAzjtSaOxruUqhdP3azPORLK2y3Rbcr53thsKwSY-gkJ4rI3mq83JiMLkvirrNiDnDkIbzzYEkgpstVssYBa9HKO43X2WuMjHdlGwrKlF08v22zgE8L7KU_XusMgho7__Hzu2S7cEDpTW4xe2QlHuyTrTlawgPSfzKYq41HDmKcpW-6N6AQBQMqYfM6xSnGNAEDGn7iZ1HtDisjqicpdkkMJ2OaD9jpRXQav2e1d3Q8MZj1oemQ4kh7igSVX4fkuXHXuW06xVQGJ4JwNnUk-GjajX2RGMt1wBiPQtdaCAxlYLiw9YSLxMo6w7lI3A1N5PGEm5AxOHfwh9gRqQyGg_iYUIDNIPBtaIWIIAwyuIGrPamNAU0JViV-eRYqKijLcXJGX7kzZtNcmQqVqQplVsnVTOwj5-xYJiDnD1qlWbIkySebKLZEtlZahSqu_1h5AUfevVD4J3_Y-oJsNDuPLdW6bz-ckk0PGy-w1NKvkUo6msRnZD2apr3x6Dwz-W92-_uM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI54CcGBN-JNDlwLa9O0yREBEwg0OIzHLUqaBiZN27R2Q_x77D4mJoQ4wLGRHFWOE_uz7M-EnEhnNThS67FGoL0wDownteaehrsUaz9M_SIP-XQXt1ri5UU-VNWEWVVWiRjalUQRxVuNl3tgXV0Rd1bUckAcD-gugCWBLl3OknkInSPEX-3m8-QxRsK7ugsFZeomnp-2mXJPU-Sl3x7rwgM1V__h39fIShV-0vPSXtbJTNrbIMtfSAk3SffeYKY2HXro4Sx91Z0eBQwMPglb1ynOMKYOzKf_jp9VrTusDKke5dgj0R9ltByv00noOH0rKu9oNjKY86F5n-JAe4r0lB9b5LF51b649qqZDF4CYDb3JERo2k9D4YzlOmKMJ7FvLcBCGRkubMNx4axsMJyKxP3YJAF33MSMwalDNMS2yVyv30t3CAWnGUWhja0QCYAggxv4OpDaGNCUYLskrI9CJRVhOc7N6Cp_wmtaKlOhMlWlzF1yOhEblIwdvwnIr-es8iJV4sq5Jor9IntQG4WqLn-mgogj614swr0_bH1MFh8um-rupnW7T5YC7LrAOsvwgMzlw1F6SBaScd7JhkeFwX8Cd9L6PQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observer-based+gain+scheduling+path+following+control+for+autonomous+electric+vehicles+subject+to+time+delay&rft.jtitle=Vehicle+system+dynamics&rft.au=Chu%2C+Shaoqiang&rft.au=Xie%2C+Zhengchao&rft.au=Wong%2C+Pak+Kin&rft.au=Li%2C+Panshuo&rft.date=2022-05-04&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0042-3114&rft.eissn=1744-5159&rft.volume=60&rft.issue=5&rft.spage=1602&rft.epage=1626&rft_id=info:doi/10.1080%2F00423114.2020.1864419&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-3114&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-3114&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-3114&client=summon |