Deep learning on Sleptsov nets
Sleptsov nets are applied as a uniform language to specify models of unconventional computations and artificial intelligence systems. A technique for specification of neural networks, including multidimensional and multilayer networks of deep learning approach, using Sleptsov nets, is shown; the way...
Saved in:
| Published in: | International journal of parallel, emergent and distributed systems Vol. 36; no. 6; pp. 535 - 548 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
02.11.2021
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 1744-5760, 1744-5779 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Sleptsov nets are applied as a uniform language to specify models of unconventional computations and artificial intelligence systems. A technique for specification of neural networks, including multidimensional and multilayer networks of deep learning approach, using Sleptsov nets, is shown; the ways of specifying basic activation functions by Sleptsov net are discussed, the threshold and sigmoid functions implemented. A methodology of training neural networks is presented with the loss function minimisation, based on a run of a pair of interacting Sleptsov nets, the first net implementing the neural network based on data flow approach, while the second net solves the optimisation task by adjusting the weights of the first net by the gradient descend method. The optimising net uses the earlier developed technology of programming in Sleptsov nets with reverse control flow and the subnet call technique. Real numbers and arrays are represented as markings of a single place of a Sleptsov net. Hyperperformance is achieved because of the possibility of implementing mass parallel computations. |
|---|---|
| AbstractList | Sleptsov nets are applied as a uniform language to specify models of unconventional computations and artificial intelligence systems. A technique for specification of neural networks, including multidimensional and multilayer networks of deep learning approach, using Sleptsov nets, is shown; the ways of specifying basic activation functions by Sleptsov net are discussed, the threshold and sigmoid functions implemented. A methodology of training neural networks is presented with the loss function minimisation, based on a run of a pair of interacting Sleptsov nets, the first net implementing the neural network based on data flow approach, while the second net solves the optimisation task by adjusting the weights of the first net by the gradient descend method. The optimising net uses the earlier developed technology of programming in Sleptsov nets with reverse control flow and the subnet call technique. Real numbers and arrays are represented as markings of a single place of a Sleptsov net. Hyperperformance is achieved because of the possibility of implementing mass parallel computations. |
| Author | Lawan, Abdulmalik Ahmad Shmeleva, Tatiana R. Owsiński, Jan W. |
| Author_xml | – sequence: 1 givenname: Tatiana R. orcidid: 0000-0002-4799-3842 surname: Shmeleva fullname: Shmeleva, Tatiana R. email: t.shmeleva@onat.edu.ua organization: Department of Computer Science, State University of Intelligent Technology and Telecommunications – sequence: 2 givenname: Jan W. orcidid: 0000-0002-2750-6584 surname: Owsiński fullname: Owsiński, Jan W. organization: Systems Research Institute, Polish Academy of Sciences – sequence: 3 givenname: Abdulmalik Ahmad surname: Lawan fullname: Lawan, Abdulmalik Ahmad organization: Department of Computer Science, Kano University of Science and Technology |
| BookMark | eNqFkE1LAzEQhoNUsK3-BGXB866TzWazixelfkLBg3oO2XxIyjZZk1Tpv7el1YMHPc0wvM878EzQyHmnETrFUGBo4AKzqqKshqKEEhe4rShQeoDG23tOGWtHP3sNR2gS4wKgKquajdHZjdZD1msRnHVvmXfZc6-HFP1H5nSKx-jQiD7qk_2cote725fZQz5_un-cXc9zSUiT8hYM6cpSVkq0xsiuYkaBJrShTDDWKSMkSK2N6JQkWqoOVFMrBqZpleo0I1N0vusdgn9f6Zj4wq-C27zkJW0wxkBasknRXUoGH2PQhg_BLkVYcwx8q4J_q-BbFXyvYsNd_uKkTSJZ71IQtv-XvtrR1hkfluLTh17xJNa9DyYIJ23k5O-KL3xfeUA |
| CitedBy_id | crossref_primary_10_1016_j_ins_2022_11_098 |
| Cites_doi | 10.1109/ICASSP.2013.6638947 10.1007/BF02667189 10.1109/ACCESS.2021.3084995 10.1007/978-981-10-5209-5_1 10.3390/s20051515 10.1080/17445760.2012.662682 10.1109/TSMC.2015.2433892 10.1007/11785231_121 10.1007/s10559-012-9429-4 10.1177/1687814016640159 10.1109/TSMC.2015.2444414 10.1002/tee.22508 10.1007/s11047-010-9213-1 10.1177/0037549717709932 10.1109/5.726791 10.1109/ACCESS.2020.2999054 10.1016/j.mri.2019.05.028 10.1007/978-3-319-23111-2_12 10.1109/TNNLS.2021.3082304 10.3103/S0146411612070140 10.4018/978-1-5225-2255-3.ch672 10.1007/3-540-11981-7_5 10.1098/rsfs.2018.0029 10.1109/TPDS.2020.2990924 10.1080/00207160.2017.1283410 10.2172/4242290 10.1007/978-3-540-92910-9_58 10.1145/3133956.3134012 10.1109/ITNEC.2019.8729185 10.1109/TrustCom/BigDataSE.2018.00150 10.1126/science.1200520 10.1215/S0012-7094-36-00227-2 10.1142/7968 10.1134/S0005117914080025 10.1109/MSEC.2018.2888775 10.1109/TSMC.2012.2237549 |
| ContentType | Journal Article |
| Copyright | 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 2021 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1080/17445760.2021.1945055 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1744-5779 |
| EndPage | 548 |
| ExternalDocumentID | 10_1080_17445760_2021_1945055 1945055 |
| Genre | Research Article |
| GroupedDBID | .7F .QJ 0BK 0R~ 29J 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c338t-90f3b22c4da9ffcb47fd0e35857a77bdfac0ceefabdc3ecdb0d86d70f89ddbe73 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000667609400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1744-5760 |
| IngestDate | Sun Nov 09 07:59:53 EST 2025 Sat Nov 29 02:32:40 EST 2025 Tue Nov 18 22:15:19 EST 2025 Mon Oct 20 23:47:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-90f3b22c4da9ffcb47fd0e35857a77bdfac0ceefabdc3ecdb0d86d70f89ddbe73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4799-3842 0000-0002-2750-6584 |
| PQID | 2581110393 |
| PQPubID | 176139 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2581110393 crossref_primary_10_1080_17445760_2021_1945055 crossref_citationtrail_10_1080_17445760_2021_1945055 informaworld_taylorfrancis_310_1080_17445760_2021_1945055 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-02 |
| PublicationDateYYYYMMDD | 2021-11-02 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of parallel, emergent and distributed systems |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0032 CIT0034 Adamatzky A (CIT0005) 2005 CIT0035 CIT0038 CIT0037 CIT0039 CIT0043 CIT0042 CIT0044 Sharp JA. (CIT0049) 1992 Minsky ML. (CIT0013) 1967 Peterson JL. (CIT0045) 1981 CIT0003 CIT0047 CIT0046 Shokri R (CIT0036) 2016 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 Chollet F. (CIT0054) 2018 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0053 CIT0012 CIT0011 CIT0055 Chollet F. (CIT0033) 2018 Unconventional Computing (CIT0001) 2018 CIT0014 CIT0016 CIT0015 CIT0018 Bellet A (CIT0040) 2018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 Arık SÖ (CIT0031) 2017; 1 Zaitsev DA. (CIT0026) 2018; 13 Cook M. (CIT0002) 2004; 15 CIT0025 CIT0024 Sani MA (CIT0041) 2021; 40 CIT0027 CIT0029 CIT0028 |
| References_xml | – ident: CIT0015 – ident: CIT0030 doi: 10.1109/ICASSP.2013.6638947 – ident: CIT0016 doi: 10.1007/BF02667189 – start-page: 61 volume-title: Deep learning with python year: 2018 ident: CIT0054 – volume-title: Petri net theory and the modeling of systems year: 1981 ident: CIT0045 – ident: CIT0020 doi: 10.1109/ACCESS.2021.3084995 – ident: CIT0032 doi: 10.1007/978-981-10-5209-5_1 – ident: CIT0050 doi: 10.3390/s20051515 – volume-title: A volume in the encyclopedia of complexity and systems science year: 2018 ident: CIT0001 – ident: CIT0029 – ident: CIT0009 doi: 10.1080/17445760.2012.662682 – ident: CIT0018 doi: 10.1109/TSMC.2015.2433892 – ident: CIT0012 doi: 10.1007/11785231_121 – volume: 40 start-page: 91 issue: 1 year: 2021 ident: CIT0041 publication-title: Int J Comput (IJC) – ident: CIT0022 doi: 10.1007/s10559-012-9429-4 – ident: CIT0037 – ident: CIT0048 doi: 10.1177/1687814016640159 – ident: CIT0017 doi: 10.1109/TSMC.2015.2444414 – ident: CIT0023 doi: 10.1002/tee.22508 – ident: CIT0003 doi: 10.1007/s11047-010-9213-1 – ident: CIT0028 doi: 10.1177/0037549717709932 – ident: CIT0052 doi: 10.1109/5.726791 – ident: CIT0019 doi: 10.1109/ACCESS.2020.2999054 – ident: CIT0039 doi: 10.1016/j.mri.2019.05.028 – ident: CIT0053 – ident: CIT0027 doi: 10.1007/978-3-319-23111-2_12 – ident: CIT0044 doi: 10.1109/TNNLS.2021.3082304 – ident: CIT0025 doi: 10.3103/S0146411612070140 – ident: CIT0047 doi: 10.4018/978-1-5225-2255-3.ch672 – ident: CIT0046 doi: 10.1007/3-540-11981-7_5 – ident: CIT0008 doi: 10.1098/rsfs.2018.0029 – start-page: 473 volume-title: International Conference on Artificial Intelligence and Statistics year: 2018 ident: CIT0040 – ident: CIT0043 doi: 10.1109/TPDS.2020.2990924 – ident: CIT0021 doi: 10.1080/00207160.2017.1283410 – start-page: 3 volume-title: Deep learning with python year: 2018 ident: CIT0033 – ident: CIT0011 doi: 10.2172/4242290 – volume-title: Computation: finite and Infinite machines year: 1967 ident: CIT0013 – volume-title: Data flow computing: theory and practice year: 1992 ident: CIT0049 – ident: CIT0007 doi: 10.1007/978-3-540-92910-9_58 – ident: CIT0034 doi: 10.1145/3133956.3134012 – ident: CIT0042 doi: 10.1109/ITNEC.2019.8729185 – ident: CIT0010 – ident: CIT0038 doi: 10.1109/TrustCom/BigDataSE.2018.00150 – ident: CIT0004 doi: 10.1126/science.1200520 – start-page: 909 volume-title: 2015 53rd Annu. Allert. Conf. Commun. Control. Comput. Allert. 2015 year: 2016 ident: CIT0036 – volume-title: Reaction-diffusion computers year: 2005 ident: CIT0005 – ident: CIT0014 doi: 10.1215/S0012-7094-36-00227-2 – volume: 1 start-page: 264 year: 2017 ident: CIT0031 publication-title: 34th int Conf Mach Learn ICML – ident: CIT0051 – volume: 13 start-page: 121 issue: 1 year: 2018 ident: CIT0026 publication-title: J Cell Autom – volume: 15 start-page: 1 year: 2004 ident: CIT0002 publication-title: Complex Syst – ident: CIT0006 doi: 10.1142/7968 – ident: CIT0055 doi: 10.1134/S0005117914080025 – ident: CIT0035 doi: 10.1109/MSEC.2018.2888775 – ident: CIT0024 doi: 10.1109/TSMC.2012.2237549 |
| SSID | ssj0042467 |
| Score | 2.2294767 |
| Snippet | Sleptsov nets are applied as a uniform language to specify models of unconventional computations and artificial intelligence systems. A technique for... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 535 |
| SubjectTerms | Artificial intelligence Deep learning gradient descend mass parallel computations Multilayers Neural network Neural networks Optimization Real numbers sigmoid Sleptsov net |
| Title | Deep learning on Sleptsov nets |
| URI | https://www.tandfonline.com/doi/abs/10.1080/17445760.2021.1945055 https://www.proquest.com/docview/2581110393 |
| Volume | 36 |
| WOSCitedRecordID | wos000667609400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1744-5779 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0042467 issn: 1744-5760 databaseCode: TFW dateStart: 20050301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPHixPrFaZQ9eU9Ns2uweRS0epAhW7S3kMRGhbEt37e83yWbFItKDHvcwIUwyr83M9yF0qRW1kuUcU24Ae_QRZ3Ogseayb_yrIwv8KS8PfDzOptP8MXYTlrGt0tfQtgaKCL7aG7dUZdMRd-WSaObSZOKqO9rvuSrcRXE_Zu5CvzfNyei18cWMssAh6yWwF2lmeH5bZS06rWGX_vDVIQCN2v-w9T20G7PP5Lq-LvtoC4oD1G6YHZJo6Ifo4hZgkURGibdkXiRPM1hU5XyVFFCVR-h5dDe5uceRSQFrV4JWOCc2VZRqZmRurVaMW0MgdaUCl5wrY6UmLlpaqYxOQRtFTDY0nNgsN0YBT49Rq5gXcOJnvMHAkHDNCLhUayitq0MHLq0LD3Rs0EGs0aDQEWbcs13MRD-ikTY6EF4HIuqgg3pfYosaZ2OTQP79eEQVfnDYmo1EpBtku81ZimiypaCDzPl9P6p8-oelz9CO_wzTirSLWtXyA87Rtl5V7-XyIlzOT0cR3Y8 |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8UTfQifkYUcQevw9J1dDsalWBELqJya7b21ZiQQdjk77ftOgMxhoOem9c0r31fbd_vh9CVSIlKaMx8wiT4Bn1E2xwIX7CkI82rI7X8Ka8DNhxG43G83AtjvlWaGlqVQBHWVxvjNpfR1Ze4a51FU50nY13ekU5bl-E6jIebaCvUsdbg5496b5U3poRaFlkj4huZqovnt2lW4tMKeukPb21DUK_-H4vfR3suAfVuyhNzgDYgO0T1itzBc7Z-hFp3ADPPkUq8e9PMe57ArMinCy-DIj9GL7370W3fd2QKvtBVaOHHWAUpIYLKJFZKpJQpiSHQ1QJLGEulSgTWAVMlqRQBCJliGXUlwyqKpUyBBSeolk0zODVt3iChi5mgGHS21U2ULkVDndnZNzoaNhCtVMiFQxo3hBcT3nGApJUOuNEBdzpooPa32KyE2lgnEC_vDy_sHYcqCUl4sEa2WW0md1abcxJG2vWbbuWzP0x9iXb6o6cBHzwMH8_RrhmyzYukiWrF_BMu0LZYFB_5vGVP6hdrCeG5 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86Rbw4P3E6Zw9eO7M0bdqjOIviGAOn7hbafIgw2rLW_f0maSoOkR302vJCecn7at77_QC4YimSCY6IiwgXrkYfUTYnmMtIMuD61hEb_pSXERmPw9ksmthuwtK2VeoaWtZAEcZXa-MuuGw64q5VEo1VmgxVdYcGfVWFqyjub4It9SzQh3wavzbOGCNsSGS1iKtlmiGe35ZZCU8r4KU_nLWJQHH7H759H-zZ9NO5qc_LAdgQ2SFoN9QOjrX0I9AbClE4llLizckz52kuiqrMl04mqvIYPMd309t711IpuEzVoJUbQemlCDHMk0hKlmIiORSeqhVIQkjKZcKgCpcySTnzBOMp5GHACZRhxHkqiHcCWlmeiVM95C24CCBhGAqVawWJVIWor_I6c0OH_Q7AjQYpszjjmu5iTgcWjrTRAdU6oFYHHdD_EitqoI11AtH37aGV-cMhazoS6q2R7TZ7Sa3NlhT5oXL8elb57A9LX4KdyTCmo4fx4znY1W_M5CLqgla1-BAXYJstq_dy0TPn9BPOQ-Br |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+on+Sleptsov+nets&rft.jtitle=International+journal+of+parallel%2C+emergent+and+distributed+systems&rft.au=Shmeleva%2C+Tatiana+R.&rft.au=Owsi%C5%84ski%2C+Jan+W.&rft.au=Lawan%2C+Abdulmalik+Ahmad&rft.date=2021-11-02&rft.pub=Taylor+%26+Francis&rft.issn=1744-5760&rft.eissn=1744-5779&rft.volume=36&rft.issue=6&rft.spage=535&rft.epage=548&rft_id=info:doi/10.1080%2F17445760.2021.1945055&rft.externalDocID=1945055 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-5760&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-5760&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-5760&client=summon |