An inertial subgradient extragradient algorithm with adaptive stepsizes for variational inequality problems

In this paper, we introduce an efficient subgradient extragradient (SE) based method for solving variational inequality problems with monotone operator in Hilbert space. In many existing SE methods, two values of operator are needed over each iteration and the Lipschitz constant of the operator or l...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization methods & software Ročník 37; číslo 4; s. 1507 - 1526
Hlavní autori: Chang, Xiaokai, Liu, Sanyang, Deng, Zhao, Li, Suoping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 04.07.2022
Taylor & Francis Ltd
Predmet:
ISSN:1055-6788, 1029-4937
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we introduce an efficient subgradient extragradient (SE) based method for solving variational inequality problems with monotone operator in Hilbert space. In many existing SE methods, two values of operator are needed over each iteration and the Lipschitz constant of the operator or linesearch is required for estimating step sizes, which are usually not practical and expensive. To overcome these drawbacks, we present an inertial SE based algorithm with adaptive step sizes, estimated by using an approximation of the local Lipschitz constant without running a linesearch. Each iteration of the method only requires a projection on the feasible set and a value of the operator. The numerical experiments illustrate the efficiency of the proposed algorithm.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1055-6788
1029-4937
DOI:10.1080/10556788.2021.1910946