An inertial subgradient extragradient algorithm with adaptive stepsizes for variational inequality problems
In this paper, we introduce an efficient subgradient extragradient (SE) based method for solving variational inequality problems with monotone operator in Hilbert space. In many existing SE methods, two values of operator are needed over each iteration and the Lipschitz constant of the operator or l...
Saved in:
| Published in: | Optimization methods & software Vol. 37; no. 4; pp. 1507 - 1526 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
04.07.2022
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 1055-6788, 1029-4937 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we introduce an efficient subgradient extragradient (SE) based method for solving variational inequality problems with monotone operator in Hilbert space. In many existing SE methods, two values of operator are needed over each iteration and the Lipschitz constant of the operator or linesearch is required for estimating step sizes, which are usually not practical and expensive. To overcome these drawbacks, we present an inertial SE based algorithm with adaptive step sizes, estimated by using an approximation of the local Lipschitz constant without running a linesearch. Each iteration of the method only requires a projection on the feasible set and a value of the operator. The numerical experiments illustrate the efficiency of the proposed algorithm. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1055-6788 1029-4937 |
| DOI: | 10.1080/10556788.2021.1910946 |