On modules and rings in which complements are isomorphic to direct summands

A right R-module M is virtually extending (or CIS) if every complement submodule of M is isomorphic to a direct summand of M, and M is called a virtually C2-module if every complement submodule of M which is isomorphic to a direct summand of M is itself a direct summand. The class of virtually exten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in algebra Jg. 50; H. 3; S. 1154 - 1168
Hauptverfasser: Karabacak, Fatih, Koşan, M. Tamer, Quynh, T. Cong, Taşdemir, Özgür
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 04.03.2022
Taylor & Francis Ltd
Schlagworte:
ISSN:0092-7872, 1532-4125
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A right R-module M is virtually extending (or CIS) if every complement submodule of M is isomorphic to a direct summand of M, and M is called a virtually C2-module if every complement submodule of M which is isomorphic to a direct summand of M is itself a direct summand. The class of virtually extending modules (respectively, virtually C2-modules) is a strict and simultaneous generalization of extending modules (respectively, unifies extending modules and C2-modules): M is a semisimple module if and only if M is virtually semisimple and C2, and M is an extending module if and only if M is virtually extending and virtually C2. Furthermore, every virtually simple right R-module is injective if and only if R is a right V-ring and the class of virtually simple right R-modules coincides with the class of simple right R-modules. Among other results, we show that (1) if all cyclic sub-factors of a cyclic weakly co-Hopfian right R-module M are virtually extending, then M is a finite direct sum of uniform submodules; (2) every distributive virtually extending module over any Noetherian ring is a direct sum of uniform submodules; (3) over a right Noetherian ring, every virtually extending module satisfies the Schröder-Bernstein property; (4) being virtually extending (VC2) is a Morita invariant property; (4) if is a VC2-module where denotes the injective hull, then M is injective. Communicated by Scott Chapman
AbstractList A right R-module M is virtually extending (or CIS) if every complement submodule of M is isomorphic to a direct summand of M, and M is called a virtually C2-module if every complement submodule of M which is isomorphic to a direct summand of M is itself a direct summand. The class of virtually extending modules (respectively, virtually C2-modules) is a strict and simultaneous generalization of extending modules (respectively, unifies extending modules and C2-modules): M is a semisimple module if and only if M is virtually semisimple and C2, and M is an extending module if and only if M is virtually extending and virtually C2. Furthermore, every virtually simple right R-module is injective if and only if R is a right V-ring and the class of virtually simple right R-modules coincides with the class of simple right R-modules. Among other results, we show that (1) if all cyclic sub-factors of a cyclic weakly co-Hopfian right R-module M are virtually extending, then M is a finite direct sum of uniform submodules; (2) every distributive virtually extending module over any Noetherian ring is a direct sum of uniform submodules; (3) over a right Noetherian ring, every virtually extending module satisfies the Schröder-Bernstein property; (4) being virtually extending (VC2) is a Morita invariant property; (4) if is a VC2-module where denotes the injective hull, then M is injective.Communicated by Scott Chapman
A right R-module M is virtually extending (or CIS) if every complement submodule of M is isomorphic to a direct summand of M, and M is called a virtually C2-module if every complement submodule of M which is isomorphic to a direct summand of M is itself a direct summand. The class of virtually extending modules (respectively, virtually C2-modules) is a strict and simultaneous generalization of extending modules (respectively, unifies extending modules and C2-modules): M is a semisimple module if and only if M is virtually semisimple and C2, and M is an extending module if and only if M is virtually extending and virtually C2. Furthermore, every virtually simple right R-module is injective if and only if R is a right V-ring and the class of virtually simple right R-modules coincides with the class of simple right R-modules. Among other results, we show that (1) if all cyclic sub-factors of a cyclic weakly co-Hopfian right R-module M are virtually extending, then M is a finite direct sum of uniform submodules; (2) every distributive virtually extending module over any Noetherian ring is a direct sum of uniform submodules; (3) over a right Noetherian ring, every virtually extending module satisfies the Schröder-Bernstein property; (4) being virtually extending (VC2) is a Morita invariant property; (4) if is a VC2-module where denotes the injective hull, then M is injective. Communicated by Scott Chapman
Author Koşan, M. Tamer
Karabacak, Fatih
Taşdemir, Özgür
Quynh, T. Cong
Author_xml – sequence: 1
  givenname: Fatih
  surname: Karabacak
  fullname: Karabacak, Fatih
  organization: ÜYEP Research and Practice Center, Anadolu University
– sequence: 2
  givenname: M. Tamer
  surname: Koşan
  fullname: Koşan, M. Tamer
  organization: Department of Mathematics, Faculty of Sciences, Gazi University
– sequence: 3
  givenname: T. Cong
  surname: Quynh
  fullname: Quynh, T. Cong
  organization: Department of Mathematics, The University of Danang - University of Education
– sequence: 4
  givenname: Özgür
  surname: Taşdemir
  fullname: Taşdemir, Özgür
  email: ozgurtasdemir@trakya.edu.tr
  organization: Department of Business Administration, Trakya University, Faculty of Economics and Administrative Sciences
BookMark eNqFkE1LAzEQhoNUsK3-BCHgeWuS7W528aIUv7DQi55DNpnYlN2kJllK_71bWi8e9DSHeZ93mGeCRs47QOiakhklFbklpGa84mzGCKMzWvOasPIMjWmRs2xOWTFC40MmO4Qu0CTGDSG04BUbo7eVw53XfQsRS6dxsO4zYuvwbm3VGivfbVvowKVhHQDb6DsftsMOJ4-1DaASjn3XDWy8ROdGthGuTnOKPp4e3xcv2XL1_Lp4WGYqz6uUVYwpgJw1lZa6KExtFKc8BwONnoNuCKWgwXBTGFDl8MNcl6TRNc8Vacq6zqfo5ti7Df6rh5jExvfBDScFK1nFKKs5HVLFMaWCjzGAEdtgOxn2ghJx8CZ-vImDN3HyNnB3vzhlk0zWuxSkbf-l74-0dcaHTu58aLVIct_6YIJ0ykaR_13xDVYXiVQ
CitedBy_id crossref_primary_10_24330_ieja_1767105
crossref_primary_10_1080_00927872_2024_2352081
crossref_primary_10_1080_23799927_2024_2392492
crossref_primary_10_1007_s11253_024_02370_3
crossref_primary_10_1007_s43538_022_00131_z
Cites_doi 10.1017/CBO9780511600692
10.1007/BF01220018
10.1016/j.jalgebra.2017.03.039
10.1090/S0002-9939-97-03747-7
10.1112/plms/s3-28.2.291
10.1017/CBO9780511546525
10.1016/0021-8693(66)90028-7
10.1080/00927879308824655
10.4153/CMB-1961-011-6
10.1080/00927872.2017.1384002
10.1090/S0002-9947-1965-0174592-8
10.1006/jabr.2001.8851
10.1142/S0219498812501599
10.1007/978-1-4684-9913-1
10.1016/j.jpaa.2018.03.018
10.4153/CMB-1974-044-8
10.1007/s10468-017-9748-2
10.1016/0021-8693(91)90298-M
ContentType Journal Article
Copyright 2021 Taylor & Francis Group, LLC 2021
2021 Taylor & Francis Group, LLC
Copyright_xml – notice: 2021 Taylor & Francis Group, LLC 2021
– notice: 2021 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00927872.2021.1979026
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4125
EndPage 1168
ExternalDocumentID 10_1080_00927872_2021_1979026
1979026
Genre Research Article
GroupedDBID -DZ
-~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
XSW
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-822cee32b8dad55f9fc7173efebd4edb011edef7f5fec65324d60bd973c0b6993
IEDL.DBID TFW
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709735700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0092-7872
IngestDate Sun Nov 30 04:03:38 EST 2025
Tue Nov 18 22:28:20 EST 2025
Sat Nov 29 02:27:52 EST 2025
Mon Oct 20 23:47:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-822cee32b8dad55f9fc7173efebd4edb011edef7f5fec65324d60bd973c0b6993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2628212971
PQPubID 2045307
PageCount 15
ParticipantIDs informaworld_taylorfrancis_310_1080_00927872_2021_1979026
proquest_journals_2628212971
crossref_citationtrail_10_1080_00927872_2021_1979026
crossref_primary_10_1080_00927872_2021_1979026
PublicationCentury 2000
PublicationDate 2022-03-04
PublicationDateYYYYMMDD 2022-03-04
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-04
  day: 04
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Communications in algebra
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0011
Dung N. V. (CIT0007) 1994; 313
CIT0013
CIT0015
Smith P. F. (CIT0022) 1992; 18
CIT0018
CIT0017
CIT0019
CIT0020
CIT0001
Mohamed S. (CIT0016) 1977; 2
CIT0023
Tuganbaev A. A. (CIT0025) 1999; 12
Sasiada E. (CIT0021) 1961; 9
Hamdouni A. (CIT0012) 2005; 5
CIT0003
CIT0002
CIT0024
CIT0005
Lam T. Y. (CIT0014) 1999; 189
CIT0027
CIT0004
CIT0026
CIT0006
CIT0009
Guil Asensio P. A. (CIT0010) 2015; 634
Wisbauer R. (CIT0028) 1991
CIT0008
References_xml – ident: CIT0017
  doi: 10.1017/CBO9780511600692
– volume: 9
  start-page: 331
  year: 1961
  ident: CIT0021
  publication-title: Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys
– ident: CIT0004
  doi: 10.1007/BF01220018
– volume: 189
  volume-title: Graduate Texts in Mathematics
  year: 1999
  ident: CIT0014
– ident: CIT0008
  doi: 10.1016/j.jalgebra.2017.03.039
– ident: CIT0009
  doi: 10.1090/S0002-9939-97-03747-7
– ident: CIT0024
  doi: 10.1112/plms/s3-28.2.291
– ident: CIT0018
  doi: 10.1017/CBO9780511546525
– ident: CIT0006
– ident: CIT0019
  doi: 10.1016/0021-8693(66)90028-7
– volume-title: Foundations of Module and Ring Theory
  year: 1991
  ident: CIT0028
– ident: CIT0023
  doi: 10.1080/00927879308824655
– ident: CIT0027
  doi: 10.4153/CMB-1961-011-6
– ident: CIT0002
  doi: 10.1080/00927872.2017.1384002
– volume: 634
  start-page: 81
  year: 2015
  ident: CIT0010
  publication-title: Contemp. Math
– volume: 313
  volume-title: Extending Modules, Pitman RN Mathematics
  year: 1994
  ident: CIT0007
– ident: CIT0026
  doi: 10.1090/S0002-9947-1965-0174592-8
– ident: CIT0011
  doi: 10.1006/jabr.2001.8851
– ident: CIT0015
  doi: 10.1142/S0219498812501599
– ident: CIT0001
  doi: 10.1007/978-1-4684-9913-1
– ident: CIT0005
  doi: 10.1016/j.jpaa.2018.03.018
– volume: 18
  start-page: 339
  issue: 3
  year: 1992
  ident: CIT0022
  publication-title: Houston J. Math
– ident: CIT0013
  doi: 10.4153/CMB-1974-044-8
– volume: 12
  volume-title: Distributive Modules and Related Topics, Algebra, Logic and Applications
  year: 1999
  ident: CIT0025
– ident: CIT0003
  doi: 10.1007/s10468-017-9748-2
– volume: 5
  start-page: 469
  issue: 3
  year: 2005
  ident: CIT0012
  publication-title: J. Algebra Numb. Theory Appl
– volume: 2
  start-page: 107
  year: 1977
  ident: CIT0016
  publication-title: Arab. J. Sci. Eng
– ident: CIT0020
  doi: 10.1016/0021-8693(91)90298-M
SSID ssj0015782
Score 2.321608
Snippet A right R-module M is virtually extending (or CIS) if every complement submodule of M is isomorphic to a direct summand of M, and M is called a virtually...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1154
SubjectTerms Co-Hopfian module
Modules
Osofsky-Smith Theorem
Schröder-Bernstein property
square-free module
virtually C2 module
virtually extending module
virtually semisimple module
Title On modules and rings in which complements are isomorphic to direct summands
URI https://www.tandfonline.com/doi/abs/10.1080/00927872.2021.1979026
https://www.proquest.com/docview/2628212971
Volume 50
WOSCitedRecordID wos000709735700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1532-4125
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015782
  issn: 0092-7872
  databaseCode: TFW
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCDb7FaZQ9eU5PNY7NHEYsgVg8VewvZFw20iXRT_fvO5oVFpAc9h9kkMzuv3ZlvELqmmhABjsSJiUydQDEBKiWEIyPKXYi3lc_SatgEHY_j6ZS9NNWEpimrtDm0roEiKlttlTvlpq2Iu7E4QbDPbBsV8YYeowwSCbDC4Pqtak5Gb909ggVrr3EoIY4EkraH57dV1rzTGnbpD1tdOaDR_j98-gHaa6JPfFtvl0O0pfIjtPvUQbeaY_T4nONFIVdzZTC8BttzP4OzHH_OMjHDVQl6daQIj5cKZ6ZYFCCrTOCywLWDxFVHXC7NCXod3U_uHpxm4oIjIFUtQWAEnKZPeCxTGYaaaWFv6ZVWXAZKcjAGSipNdaiViEIIxmTkcsmoL1weQahzinp5kaszhHXgxWDUOWchhRQwZPCzYegrN_WIhIX7KGg5nYgGjtxOxZgnXodaWvMqsbxKGl710bAje6_xODYRsO9iTMrqIETXU0sSfwPtoJV50qi2SUgEWSpESdQ7_8PSF2iH2EYKW80WDFCvXK7UJdoWH2VmllfVJv4Cb_Ts0w
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4NAEN5oNVEPvo3VqnvwSoWFhe7RGJuaPrzU2NsG9pGStGAK1b_vLNCmjTE96JnMAjO789qZbxC6DzQhAgyJ1SIytDzFBBwpISzpB5EN_rZyWVgMmwgGg9ZoxFZ7YUxZpYmhdQkUUehqc7hNMnpREvdggIJgo5k-KuI0HRYwiCS20Q4FW2vw84ft9-VNgoFrL5EowZMEmkUXz2_LrNmnNfTSH9q6MEHto__4-GN0WDmg-LHcMSdoSyWn6KC_RG_NzlD3NcHTVM4nKsPwHmxSfxmOE_w1jsUYF1XoRVYRHs8UjrN0moK4YoHzFJc2EhdNcYnMztFb-3n41LGqoQuWgGg1B5kRsJsuiVoylJRqpoW5qFdaRdJTMgJ9oKTSgaZaCZ-CPyZ9O5IscIUd-eDtXKBakibqEmHtOS3Q61HEaABRIGXws5S6yg4dImHhOvIWrOaiQiQ3gzEm3FkCl5a84oZXvOJVHTWXZB8lJMcmArYqR54XuRBdDi7h7gbaxkLovDrdGSc-BKrgKAXO1R-WvkN7nWG_x3svg-412iemr8IUt3kNVMtnc3WDdsVnHmez22JHfwN9dPD9
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAQH3ojBgBy4dqzpazkioAINxg5D7BateWiVtnZaOvj7OG1XMSG0A5wrp63t-JHYnxG6DhQhHByJ1SZiaLmScthSnFvCD6IWxNvSocN82ETQ7bYHA9orqwl1WVZpcmhVAEXkttps7qlQi4q4G4MTBHpm2qiI3bRpQCGRWEcbEDr7Rsn74Xt1kWDQ2gsgSggkgWbRxPPbMkvuaQm89Iexzj1QuPcP376PdsvwE98W-nKA1mRyiHZeKuxWfYQ6rwmepGI-lhrDa7A5-NM4TvDnKOYjnNeg52eK8HgmcazTSQrCijnOUlx4SJy3xCVCH6O38KF_92iVIxcsDrlqBhIj4DUdErXFUHieooqba3qpZCRcKSKwBlJIFShPSe57EI0JvxUJGji8FfkQ65ygWpIm8hRh5dptsOpRRL0AckCPws96niNbQ5sIWLiO3AWnGS_xyM1YjDGzK9jSglfM8IqVvKqjZkU2LQA5VhHQ72JkWX4SooqxJcxZQdtYyJyVe1sz4kOaCmFSYJ_9YekrtNW7D9nzU7dzjraJaaowlW1uA9Wy2VxeoE3-kcV6dpnr8xerTe-v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+modules+and+rings+in+which+complements+are+isomorphic+to+direct+summands&rft.jtitle=Communications+in+algebra&rft.au=Karabacak%2C+Fatih&rft.au=Ko%C5%9Fan%2C+M.+Tamer&rft.au=Quynh%2C+T.+Cong&rft.au=Ta%C5%9Fdemir%2C+%C3%96zg%C3%BCr&rft.date=2022-03-04&rft.issn=0092-7872&rft.eissn=1532-4125&rft.volume=50&rft.issue=3&rft.spage=1154&rft.epage=1168&rft_id=info:doi/10.1080%2F00927872.2021.1979026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00927872_2021_1979026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-7872&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-7872&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-7872&client=summon