A neurodynamic approach for solving portfolio optimisation problem in high-frequency trading based on charnes-chooper transformation

This study addresses real-time portfolio optimisation in high-frequency trading by formulating it as a single-ratio fractional programming problem. By utilising the Charnes-Cooper transformation, we convert fractional programming into non-fractional programming. Subsequently, we introduce a projecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of systems science Jg. 56; H. 7; S. 1561 - 1576
Hauptverfasser: Zhu, Wenli, Chen, Jia, Hu, Jin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Taylor & Francis 19.05.2025
Taylor & Francis Ltd
Schlagworte:
ISSN:0020-7721, 1464-5319
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study addresses real-time portfolio optimisation in high-frequency trading by formulating it as a single-ratio fractional programming problem. By utilising the Charnes-Cooper transformation, we convert fractional programming into non-fractional programming. Subsequently, we introduce a projection neural network to solve this non-fractional programming efficiently. Theoretical analysis substantiates that our neural network model exhibits exponential convergence to the optimal solution of the problem, underpinning its efficacy. The numerical simulations validate the reliability and efficiency of the obtained results.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0020-7721
1464-5319
DOI:10.1080/00207721.2024.2428844